
Mac OS X ABI Mach-O File Format
Reference

2007-04-26

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS,
Macintosh, Objective-C, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Mac OS X ABI Mach-O File Format Reference 7

Overview 7
Basic Structure 7
Header Structure and Load Commands 8
Segments 9
Sections 10

Data Types 12
Header Data Structure 12
Load Command Data Structures 17
Symbol Table and Related Data Structures 39
Relocation Data Structures 49
Static Archive Libraries 54
Universal Binaries and 32-bit/64-bit PowerPC Binaries 55

Document Revision History 59

Index 63

3
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

4
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures and Tables

Mac OS X ABI Mach-O File Format Reference 7

Figure 1 Mach-O file format basic structure 8
Table 1 The sections of a __TEXT segment 10
Table 2 The sections of a __DATA segment 11
Table 3 The sections of a __IMPORT segment 11
Table 4 Mach-O load commands 18

5
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

6
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

F I G U R E S A N D T A B L E S

Declared in: loader.h

Overview

This document describes the structure of the Mach-O (Mach object) file format, which is the standard
used to store programs and libraries on disk in the Mac OS X application binary interface (ABI). To
understand how the Xcode tools work with Mach-O files, and to perform low-level debugging tasks,
you need to understand this information.

The Mach-O file format provides both intermediate (during the build process) and final (after linking
the final product) storage of machine code and data. It was designed as a flexible replacement for the
BSD a.out format, to be used by the compiler and the static linker and to contain statically linked
executable code at runtime. Features for dynamic linking were added as the goals of Mac OS X evolved,
resulting in a single file format for both statically linked and dynamically linked code.

Basic Structure

A Mach-O file contains three major regions (as shown in Figure 1):

 ■ At the beginning of every Mach-O file is a header structure that identifies the file as a Mach-O
file. The header also contains other basic file type information, indicates the target architecture,
and contains flags specifying options that affect the interpretation of the rest of the file.

 ■ Directly following the header are a series of variable-size load commands that specify the layout
and linkage characteristics of the file. Among other information, the load commands can specify:

 ❏ The initial layout of the file in virtual memory

 ❏ The location of the symbol table (used for dynamic linking)

 ❏ The initial execution state of the main thread of the program

 ❏ The names of shared libraries that contain definitions for the main executable’s imported
symbols

Overview 7
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format
Reference

 ■ Following the load commands, all Mach-O files contain the data of one or more segments. Each
segment contains zero or more sections. Each section of a segment contains code or data of some
particular type. Each segment defines a region of virtual memory that the dynamic linker maps
into the address space of the process. The exact number and layout of segments and sections is
specified by the load commands and the file type.

 ■ In user-level fully linked Mach-O files, the last segment is the link edit segment. This segment
contains the tables of link edit information, such as the symbol table, string table, and so forth,
used by the dynamic loader to link an executable file or Mach-O bundle to its dependent libraries.

Figure 1 Mach-O file format basic structure

Header

Load commands

Data

Section 1 data

Section 2 data

Section 3 data

Section 4 data

Section 5 data

Section n data

Segment command 1

Se
gm

en
t

1
Se

gm
en

t
2

Segment command 2

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1 (not
0) and continues across segment boundaries. Thus, the first segment in a file may contain sections 1
and 2 and the second segment may contain sections 3 and 4.

When using the Stabs debugging format, the symbol table also holds debugging information. When
using DWARF, debugging information is stored in the image’s corresponding dSYM file, specified
by the uuid_command (page 20) structure

Header Structure and Load Commands

A Mach-O file contains code and data for one architecture. The header structure of a Mach-O file
specifies the target architecture, which allows the kernel to ensure that, for example, code intended
for PowerPC-based Macintosh computers is not executed on Intel-based Macintosh computers.

You can group multiple Mach-O files (one for each architecture you want to support) in one binary
using the format described in “Universal Binaries and 32-bit/64-bit PowerPC Binaries” (page 55).

8 Overview
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

Note: Binaries that contain object files for more than one architecture are not Mach-O files. They
archive one or more Mach-O files.

Segments and sections are normally accessed by name. Segments, by convention, are named using
all uppercase letters preceded by two underscores (for example, __TEXT); sections should be named
using all lowercase letters preceded by two underscores (for example, __text). This naming convention
is standard, although not required for the tools to operate correctly.

Segments

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection
attributes at which those bytes are mapped into virtual memory when the dynamic linker loads the
application. As such, segments are always virtual memory page aligned. A segment contains zero or
more sections.

Segments that require more memory at runtime than they do at build time can specify a larger
in-memory size than they actually have on disk. For example, the __PAGEZERO segment generated by
the linker for PowerPC executable files has a virtual memory size of one page but an on-disk size of
0. Because __PAGEZERO contains no data, there is no need for it to occupy any space in the executable
file.

Note: Sections that are to be filled with zeros must always be placed at the end of the segment.
Otherwise, the standard tools will not be able to successfully manipulate the Mach-O file.

For compactness, an intermediate object file contains only one segment. This segment has no name;
it contains all the sections destined ultimately for different segments in the final object file. The data
structure that defines a section (page 23) contains the name of the segment the section is intended
for, and the static linker places each section in the final object file accordingly.

For best performance, segments should be aligned on virtual memory page boundaries—4096 bytes
for PowerPC and x86 processors. To calculate the size of a segment, add up the size of each section,
then round up the sum to the next virtual memory page boundary (4096 bytes, or 4 kilobytes). Using
this algorithm, the minimum size of a segment is 4 kilobytes, and thereafter it is sized at 4 kilobyte
increments.

The header and load commands are considered part of the first segment of the file for paging purposes.
In an executable file, this generally means that the headers and load commands live at the start of the
__TEXT segment because that is the first segment that contains data. The __PAGEZERO segment contains
no data on disk, so it’s ignored for this purpose.

These are the segments the standard Mac OS X development tools (contained in the Xcode Tools CD)
may include in a Mac OS X executable:

 ■ The static linker creates a __PAGEZERO segment as the first segment of an executable file. This
segment is located at virtual memory location 0 and has no protection rights assigned, the
combination of which causes accesses to NULL, a common C programming error, to immediately
crash. The __PAGEZERO segment is the size of one full VM page for the current architecture (for
Intel-based and PowerPC-based Macintosh computers, this is 4096 bytes or 0x1000 in hexadecimal).
Because there is no data in the __PAGEZERO segment, it occupies no space in the file (the file size
in the segment command is 0).

Overview 9
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

 ■ The __TEXT segment contains executable code and other read-only data. To allow the kernel to
map it directly from the executable into sharable memory, the static linker sets this segment’s
virtual memory permissions to disallow writing. When the segment is mapped into memory, it
can be shared among all processes interested in its contents. (This is primarily used with
frameworks, bundles, and shared libraries, but it is possible to run multiple copies of the same
executable in Mac OS X, and this applies in that case as well.) The read-only attribute also means
that the pages that make up the __TEXT segment never need to be written back to disk. When the
kernel needs to free up physical memory, it can simply discard one or more __TEXT pages and
re-read them from disk when they are next needed.

 ■ The __DATA segment contains writable data. The static linker sets the virtual memory permissions
of this segment to allow both reading and writing. Because it is writable, the __DATA segment of
a framework or other shared library is logically copied for each process linking with the library.
When memory pages such as those making up the __DATA segment are readable and writable,
the kernel marks them copy-on-write; therefore when a process writes to one of these pages, that
process receives its own private copy of the page.

 ■ The __OBJC segment contains data used by the Objective-C language runtime support library.

 ■ The __IMPORT segment contains symbol stubs and non-lazy pointers to symbols not defined in
the executable. This segment is generated only for executables targeted for the IA-32 architecture.

 ■ The __LINKEDIT segment contains raw data used by the dynamic linker, such as symbol, string,
and relocation table entries.

Sections

The __TEXT and __DATA segments may contain a number of standard sections, listed in Table 1, Table
2 (page 11), and Table 3 (page 11). The __OBJC segment contains a number of sections that are private
to the Objective-C compiler. Note that the static linker and file analysis tools use the section type and
attributes (instead of the section name) to determine how they should treat the section. The section
name, type and attributes are explained further in the description of the section (page 23) data type.

Table 1 The sections of a __TEXT segment

ContentsSegment and section
name

Executable machine code. The compiler generally places only executable
code in this section, no tables or data of any sort.

__TEXT,__text

Constant C strings. A C string is a sequence of non-null bytes that ends
with a null byte ('\0'). The static linker coalesces constant C string values,
removing duplicates, when building the final product.

__TEXT,__cstring

Position-independent indirect symbol stubs. See “Dynamic Code
Generation” in Mach-O Programming Topics for more information.

__TEXT,__picsymbol_-
stub

Indirect symbol stubs. See “Dynamic Code Generation” in Mach-O
Programming Topics for more information.

__TEXT,__symbol_stub

10 Overview
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

ContentsSegment and section
name

Initialized constant variables. The compiler places all nonrelocatable data
declared const in this section. (The compiler typically places uninitialized
constant variables in a zero-filled section.)

__TEXT,__const

4-byte literal values. The compiler places single-precision floating point
constants in this section. The static linker coalesces these values, removing
duplicates, when building the final product. With some architectures,
it’s more efficient for the compiler to use immediate load instructions
rather than adding to this section.

__TEXT,__literal4

8-byte literal values. The compiler places double-precision floating point
constants in this section. The static linker coalesces these values, removing
duplicates, when building the final product. With some architectures,
it’s more efficient for the compiler to use immediate load instructions
rather than adding to this section.

__TEXT,__literal8

Table 2 The sections of a __DATA segment

ContentsSegment and section name

Initialized mutable variables, such as writable C strings and data arrays.__DATA,__data

Lazy symbol pointers, which are indirect references to functions
imported from a different file. See “Dynamic Code Generation” in
Mach-O Programming Topics for more information.

__DATA,__la_symbol_ptr

Non-lazy symbol pointers, which are indirect references to data items
imported from a different file. See “Dynamic Code Generation” in
Mach-O Programming Topics for more information.

__DATA,__nl_symbol_ptr

Placeholder section used by the dynamic linker.__DATA,__dyld

Initialized relocatable constant variables.__DATA,__const

Module initialization functions. The C++ compiler places static
constructors here.

__DATA,__mod_init_func

Module termination functions.__DATA,__mod_term_func

Data for uninitialized static variables (for example, static int i;).__DATA,__bss

Uninitialized imported symbol definitions (for example, int i;)
located in the global scope (outside of a function declaration).

__DATA,__common

Table 3 The sections of a __IMPORT segment

ContentsSegment and section name

Stubs for calls to functions in a dynamic library.__IMPORT,__jump_table

Overview 11
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

ContentsSegment and section name

Non-lazy symbol pointers, which are direct references to functions
imported from a different file.

__IMPORT,__pointers

Note: Compilers or any tools that create Mach-O files are free to define additional section names.
These additional names do not appear in Table 1.

Data Types

This reference describes the data types that compose a Mach-O file. Values for integer types in all
Mach-O data structures are written using the host CPU’s byte ordering scheme, except for
fat_header (page 56) and fat_arch (page 56), which are written in big-endian byte order.

Header Data Structure

mach_header
Specifies the general attributes of a file. Appears at the beginning of object files targeted to 32-bit
architectures. Declared in /usr/include/mach-o/loader.h. See also mach_header_64 (page 14).

struct mach_header
{

uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;

};

Fields
magic

An integer containing a value identifying this file as a 32-bit Mach-O file. Use the constant
MH_MAGIC if the file is intended for use on a CPU with the same endianness as the computer
on which the compiler is running. The constant MH_CIGAM can be used when the byte ordering
scheme of the target machine is the reverse of the host CPU.

cputype
An integer indicating the architecture you intend to use the file on. Appropriate values include:

 ■ CPU_TYPE_POWERPC to target PowerPC-based Macintosh computers

 ■ CPU_TYPE_I386 to target the Intel-based Macintosh computers

12 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

cpusubtype
An integer specifying the exact model of the CPU. To run on all PowerPC or x86 processors
supported by the Mac OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL or
CPU_SUBTYPE_I386_ALL.

filetype
An integer indicating the usage and alignment of the file. Valid values for this field include:

 ■ The MH_OBJECT file type is the format used for intermediate object files. It is a very compact
format containing all its sections in one segment. The compiler and assembler usually
create one MH_OBJECT file for each source code file. By convention, the file name extension
for this format is .o.

 ■ The MH_EXECUTE file type is the format used by standard executable programs.

 ■ The MH_BUNDLE file type is the type typically used by code that you load at runtime (typically
called bundles or plug-ins). By convention, the file name extension for this format is
.bundle.

 ■ The MH_DYLIB file type is for dynamic shared libraries. It contains some additional tables
to support multiple modules. By convention, the file name extension for this format is
.dylib, except for the main shared library of a framework, which does not usually have
a file name extension.

 ■ The MH_PRELOAD file type is an executable format used for special-purpose programs that
are not loaded by the Mac OS X kernel, such as programs burned into programmable ROM
chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag that the
static linker sets in the header structure to mark a prebound image.

 ■ The MH_CORE file type is used to store core files, which are traditionally created when a
program crashes. Core files store the entire address space of a process at the time it crashed.
You can later run gdb on the core file to figure out why the crash occurred.

 ■ The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the type
of the dyld file.

 ■ The MH_DSYM file type designates files that store symbol information for a corresponding
binary file.

ncmds
An integer indicating the number of load commands following the header structure.

sizeofcmds
An integer indicating the number of bytes occupied by the load commands following the
header structure.

Data Types 13
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flags
An integer containing a set of bit flags that indicate the state of certain optional features of the
Mach-O file format. These are the masks you can use to manipulate this field:

 ■ MH_NOUNDEFS—The object file contained no undefined references when it was built.

 ■ MH_INCRLINK—The object file is the output of an incremental link against a base file and
cannot be linked again.

 ■ MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked
again.

 ■ MH_TWOLEVEL—The image is using two-level namespace bindings.

 ■ MH_BINDATLOAD—The dynamic linker should bind the undefined references when the file
is loaded.

 ■ MH_PREBOUND—The file’s undefined references are prebound.

 ■ MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used only
when MH_PREBEOUND is not set.

 ■ MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent about this
executable.

 ■ MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace modules
of its dependent libraries. Used only when MH_PREBINDABLE and MH_TWOLEVEL are set.

 ■ MH_CANONICAL—This file has been canonicalized by unprebinding—clearing prebinding
information from the file. See the redo_prebinding man page for details.

 ■ MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

 ■ MH_FORCE_FLAT—The executable is forcing all images to use flat namespace bindings.

 ■ MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into
individual blocks. These blocks are dead-stripped if they are not used by other code. See
“Linking” in Xcode User Guide for details.

 ■ MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of symbols
in its subimages. As a result, the two-level namespace hints can always be used.

Special Considerations

For all file types, except MH_OBJECT, segments must be aligned on page boundaries for the given CPU
architecture: 4096 bytes for PowerPC and x86 processors. This allows the kernel to page virtual memory
directly from the segment into the address space of the process. The header and load commands must
be aligned as part of the data of the first segment stored on disk (which would be the __TEXT segment,
in the file types described in filetype).

mach_header_64
Defines the general attributes of a file targeted for a 64-bit architecture. Declared in
/usr/include/mach-o/loader.h.

14 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct mach_header_64
{

uint32_t magic;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t filetype;
uint32_t ncmds;
uint32_t sizeofcmds;
uint32_t flags;
uint32_t reserved;

};

Fields
magic

An integer containing a value identifying this file as a 64-bit Mach-O file. Use the constant
MH_MAGIC_64 if the file is intended for use on a CPU with the same endianness as the computer
on which the compiler is running. The constant MH_CIGAM_64 can be used when the byte
ordering scheme of the target machine is the reverse of the host CPU.

cputype
An integer indicating the architecture you intend to use the file on. The only appropriate value
for this structure is:

 ■ CPU_TYPE_x86-64 to target 64-bit Intel-based Macintosh computers.

 ■ CPU_TYPE_POWERPC64 to target 64-bit PowerPC–based Macintosh computers.

cpusubtype
An integer specifying the exact model of the CPU. To run on all PowerPC processors supported
by the Mac OS X kernel, this should be set to CPU_SUBTYPE_POWERPC_ALL.

Data Types 15
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

filetype
An integer indicating the usage and alignment of the file. Valid values for this field include:

 ■ The MH_OBJECT file type is the format used for intermediate object files. It is a very compact
format containing all its sections in one segment. The compiler and assembler usually
create one MH_OBJECT file for each source code file. By convention, the file name extension
for this format is .o.

 ■ The MH_EXECUTE file type is the format used by standard executable programs.

 ■ The MH_BUNDLE file type is the type typically used by code that you load at runtime (typically
called bundles or plug-ins). By convention, the file name extension for this format is
.bundle.

 ■ The MH_DYLIB file type is for dynamic shared libraries. It contains some additional tables
to support multiple modules. By convention, the file name extension for this format is
.dylib, except for the main shared library of a framework, which does not usually have
a file name extension.

 ■ The MH_PRELOAD file type is an executable format used for special-purpose programs that
are not loaded by the Mac OS X kernel, such as programs burned into programmable ROM
chips. Do not confuse this file type with the MH_PREBOUND flag, which is a flag that the
static linker sets in the header structure to mark a prebound image.

 ■ The MH_CORE file type is used to store core files, which are traditionally created when a
program crashes. Core files store the entire address space of a process at the time it crashed.
You can later run gdb on the core file to figure out why the crash occurred.

 ■ The MH_DYLINKER file type is the type of a dynamic linker shared library. This is the type
of the dyld file.

 ■ The MH_DSYM file type designates files that store symbol information for a corresponding
binary file.

ncmds
An integer indicating the number of load commands following the header structure.

sizeofcmds
An integer indicating the number of bytes occupied by the load commands following the
header structure.

16 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flags
An integer containing a set of bit flags that indicate the state of certain optional features of the
Mach-O file format. These are the masks you can use to manipulate this field:

 ■ MH_NOUNDEFS—The object file contained no undefined references when it was built.

 ■ MH_INCRLINK—The object file is the output of an incremental link against a base file and
cannot be linked again.

 ■ MH_DYLDLINK—The file is input for the dynamic linker and cannot be statically linked
again.

 ■ MH_TWOLEVEL—The image is using two-level namespace bindings.

 ■ MH_BINDATLOAD—The dynamic linker should bind the undefined references when the file
is loaded.

 ■ MH_PREBOUND—The file’s undefined references are prebound.

 ■ MH_PREBINDABLE—This file is not prebound but can have its prebinding redone. Used only
when MH_PREBEOUND is not set.

 ■ MH_NOFIXPREBINDING—The dynamic linker doesn’t notify the prebinding agent about this
executable.

 ■ MH_ALLMODSBOUND—Indicates that this binary binds to all two-level namespace modules
of its dependent libraries. Used only when MH_PREBINDABLE and MH_TWOLEVEL are set.

 ■ MH_CANONICAL—This file has been canonicalized by unprebinding—clearing prebinding
information from the file. See the redo_prebinding man page for details.

 ■ MH_SPLIT_SEGS—The file has its read-only and read-write segments split.

 ■ MH_FORCE_FLAT—The executable is forcing all images to use flat namespace bindings.

 ■ MH_SUBSECTIONS_VIA_SYMBOLS—The sections of the object file can be divided into
individual blocks. These blocks are dead-stripped if they are not used by other code. See
“Linking” in Xcode User Guide for details.

 ■ MH_NOMULTIDEFS—This umbrella guarantees there are no multiple definitions of symbols
in its subimages. As a result, the two-level namespace hints can always be used.

reserved
Reserved for future use.

Special Considerations

See comment in mach_header (page 12)

Load Command Data Structures

The load command structures are located directly after the header of the object file, and they specify
both the logical structure of the file and the layout of the file in virtual memory. Each load command
begins with fields that specify the command type and the size of the command data.

load_command
Contains fields that are common to all load commands.

Data Types 17
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct load_command
{

uint32_t cmd;
uint32_t cmdsize;

};

Fields
cmd

An integer indicating the type of load command. Table 4 lists the valid load command types.

cmdsize
An integer specifying the total size in bytes of the load command data structure. Each load
command structure contains a different set of data, depending on the load command type, so
each might have a different size. In 32-bit architectures, the size must always be a multiple of
4; in 64-bit architectures, the size must always be a multiple of 8. If the load command data
does not divide evenly by 4 or 8 (depending on whether the target architecture is 32-bit or
64-bit, respectively), add bytes containing zeros to the end until it does.

Discussion
Table 4 lists the valid load command types, with links to the full data structures for each type.

Table 4 Mach-O load commands

PurposeData structuresCommands

Specifies the 128-bit UUID for an image
or its corresponding dSYM file.

uuid_command (page 20)LC_UUID

Defines a segment of this file to be
mapped into the address space of the
process that loads this file. It also includes
all the sections contained by the segment.

segment_command (page 20)LC_SEGMENT

Defines a 64-bit segment of this file to be
mapped into the address space of the
process that loads this file. It also includes
all the sections contained by the segment.

segment_command_64 (page 21)LC_SEGMENT_64

Specifies the symbol table for this file.
This information is used by both static
and dynamic linkers when linking the
file, and also by debuggers to map
symbols to the original source code files
from which the symbols were generated.

symtab_command (page 39)LC_SYMTAB

Specifies additional symbol table
information used by the dynamic linker.

dysymtab_command (page 45)LC_DYSYMTAB

For an executable file, the LC_UNIXTHREAD
command defines the initial thread state
of the main thread of the process.
LC_THREAD is similar to LC_UNIXTHREAD
but does not cause the kernel to allocate
a stack.

thread_command (page 34)LC_THREAD
LC_UNIXTHREAD

18 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

PurposeData structuresCommands

Defines the name of a dynamic shared
library that this file links against.

dylib_command (page 32)LC_LOAD_DYLIB

Specifies the install name of a dynamic
shared library.

dylib_command (page 32)LC_ID_DYLIB

For a shared library that this executable
is linked prebound against, specifies the
modules in the shared library that are
used.

prebound_dylib_command (page
33)

LC_PREBOUND_DYLIB

Specifies the dynamic linker that the
kernel executes to load this file.

dylinker_command (page 33)LC_LOAD_DYLINKER

Identifies this file as a dynamic linker.dylinker_command (page 33)LC_ID_DYLINKER

Contains the address of the shared library
initialization routine (specified by the
linker’s -init option).

routines_command (page 35)LC_ROUTINES

Contains the address of the shared library
64-bit initialization routine (specified by
the linker’s -init option).

routines_command_64 (page 36)LC_ROUTINES_64

Contains the two-level namespace lookup
hint table.

twolevel_hints_command (page
30)

LC_TWOLEVEL_HINTS

Identifies this file as the implementation
of a subframework of an umbrella
framework. The name of the umbrella
framework is stored in the string
parameter.

sub_framework_command (page
37)

LC_SUB_FRAMEWORK

Specifies a file that is a subumbrella of
this umbrella framework.

sub_umbrella_command (page 37)LC_SUB_UMBRELLA

Identifies this file as the implementation
of a sublibrary of an umbrella framework.
The name of the umbrella framework is
stored in the string parameter. Note that
Apple has not defined a supported
location for sublibraries.

sub_library_command (page 38)LC_SUB_LIBRARY

A subframework can explicitly allow
another framework or bundle to link
against it by including an LC_SUB_CLIENT
load command containing the name of
the framework or a client name for a
bundle.

sub_client_command (page 38)LC_SUB_CLIENT

Declared In
/usr/include/mach-o/loader.h

Data Types 19
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

uuid_command
Specifies the 128-bit universally unique identifier (UUID) for an image or for its corresponding dSYM
file.

struct uuid_command
{

uint32_t cmd;
uint32_t cmdsize;
uint8_t uuid[16];

};

Fields
cmd

Set to LC_UUID for this structure.

cmdsize
Set to sizeof(uuid_command).

uuid
128-bit unique identifier.

Declared In
/usr/include/mach-o/loader.h

segment_command
Specifies the range of bytes in a 32-bit Mach-O file that make up a segment. Those bytes are mapped
by the loader into the address space of a program. Declared in /usr/include/mach-o/loader.h.
See also segment_command_64 (page 21).

struct segment_command
{

uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint32_t vmaddr;
uint32_t vmsize;
uint32_t fileoff;
uint32_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

};

Fields
cmd

Common to all load command structures. Set to LC_SEGMENT for this structure.

cmdsize
Common to all load command structures. For this structure, set this field to
sizeof(segment_command) plus the size of all the section data structures that follow
(sizeof(segment_command + (sizeof(section) * segment->nsect))).

20 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

segname
A C string specifying the name of the segment. The value of this field can be any sequence of
ASCII characters, although segment names defined by Apple begin with two underscores and
consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.

vmsize
Indicates the number of bytes of virtual memory occupied by this segment. See also the
description of filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.

filesize
Indicates the number of bytes occupied by this segment on disk. For segments that require
more memory at runtime than they do at build time, vmsize can be larger than filesize. For
example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has a
vmsize of 0x1000 but a filesize of 0. Because __PAGEZERO contains no data, there is no need
for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data
at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The
loader guarantees that any memory of this sort is initialized with zeros.

maxprot
Specifies the maximum permitted virtual memory protections of this segment.

initprot
Specifies the initial virtual memory protections of this segment.

nsects
Indicates the number of section data structures following this load command.

flags
Defines a set of flags that affect the loading of this segment:

 ■ SG_HIGHVM—The file contents for this segment are for the high part of the virtual memory
space; the low part is zero filled (for stacks in core files).

 ■ SG_NORELOC—This segment has nothing that was relocated in it and nothing relocated to
it. It may be safely replaced without relocation.

Special Considerations

Segments with sections of type S_GB_ZEROFILL are placed after all other segments. See section (page
23) for additional information.

segment_command_64
Specifies the range of bytes in a 64-bit Mach-O file that make up a segment. Those bytes are mapped
by the loader into the address space of a program. If the 64-bit segment has sections, they are defined
by section_64 (page 27) structures. Declared in /usr/include/mach-o/loader.h.

Data Types 21
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct segment_command_64
{

uint32_t cmd;
uint32_t cmdsize;
char segname[16];
uint64_t vmaddr;
uint64_t vmsize;
uint64_t fileoff;
uint64_t filesize;
vm_prot_t maxprot;
vm_prot_t initprot;
uint32_t nsects;
uint32_t flags;

};

Fields
cmd

See description in segment_command (page 20). Set to LC_SEGMENT_64 for this structure.

cmdsize
Common to all load command structures. For this structure, set this field to
sizeof(segment_command_64) plus the size of all the section data structures that follow
(sizeof(segment_command_64 + (sizeof(section_64) * segment->nsect))).

segname
A C string specifying the name of the segment. The value of this field can be any sequence of
ASCII characters, although segment names defined by Apple begin with two underscores and
consist of capital letters (as in __TEXT and __DATA). This field is fixed at 16 bytes in length.

vmaddr
Indicates the starting virtual memory address of this segment.

vmsize
Indicates the number of bytes of virtual memory occupied by this segment. See also the
description of filesize, below.

fileoff
Indicates the offset in this file of the data to be mapped at vmaddr.

filesize
Indicates the number of bytes occupied by this segment on disk. For segments that require
more memory at runtime than they do at build time, vmsize can be larger than filesize. For
example, the __PAGEZERO segment generated by the linker for MH_EXECUTABLE files has a
vmsize of 0x1000 but a filesize of 0. Because __PAGEZERO contains no data, there is no need
for it to occupy any space until runtime. Also, the static linker often allocates uninitialized data
at the end of the __DATA segment; in this case, the vmsize is larger than the filesize. The
loader guarantees that any memory of this sort is initialized with zeros.

maxprot
Specifies the maximum permitted virtual memory protections of this segment.

initprot
Specifies the initial virtual memory protections of this segment.

nsects
Indicates the number of section data structures following this load command.

22 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flags
Defines a set of flags that affect the loading of this segment:

 ■ SG_HIGHVM—The file contents for this segment are for the high part of the virtual memory
space; the low part is zero filled (for stacks in core files).

 ■ SG_NORELOC—This segment has nothing that was relocated in it and nothing relocated to
it. It may be safely replaced without relocation.

section
Defines the elements used by a 32-bit section. Directly following a segment_command data structure
is an array of section data structures, with the exact count determined by the nsects field of the
segment_command (page 20) structure. Declared in /usr/include/mach-o/loader.h. See also
section_64 (page 27).

struct section
{

char sectname[16];
char segname[16];
uint32_t addr;
uint32_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;

};

Fields
sectname

A string specifying the name of this section. The value of this field can be any sequence of
ASCII characters, although section names defined by Apple begin with two underscores and
consist of lowercase letters (as in __text and __data). This field is fixed at 16 bytes in length.

segname
A string specifying the name of the segment that should eventually contain this section. For
compactness, intermediate object files—files of type MH_OBJECT—contain only one segment,
in which all sections are placed. The static linker places each section in the named segment
when building the final product (any file that is not of type MH_OBJECT).

addr
An integer specifying the virtual memory address of this section.

size
An integer specifying the size in bytes of the virtual memory occupied by this section.

offset
An integer specifying the offset to this section in the file.

align
An integer specifying the section’s byte alignment. Specify this as a power of two; for example,
a section with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff
An integer specifying the file offset of the first relocation entry for this section.

Data Types 23
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

nreloc
An integer specifying the number of relocation entries located at reloff for this section.

24 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flags
An integer divided into two parts. The least significant 8 bits contain the section type, while
the most significant 24 bits contain a set of flags that specify other attributes of the section.
These types and flags are primarily used by the static linker and file analysis tools, such as
otool, to determine how to modify or display the section. These are the possible types:

 ■ S_REGULAR—This section has no particular type. The standard tools create a __TEXT,__text
section of this type.

 ■ S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or written
to, each page within is automatically filled with bytes containing zero.

 ■ S_CSTRING_LITERALS—This section contains only constant C strings. The standard tools
create a __TEXT,__cstring section of this type.

 ■ S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long. The
standard tools create a __TEXT,__literal4 section of this type.

 ■ S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long. The
standard tools create a __TEXT,__literal8 section of this type.

 ■ S_LITERAL_POINTERS—This section contains only pointers to constant values.

 ■ S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to symbols.
The standard tools create a section of the __DATA,__nl_symbol_ptrs section of this type.

 ■ S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The
standard tools create a __DATA,__la_symbol_ptrs section of this type.

 ■ S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools create
__TEXT,__symbol_stub and__TEXT,__picsymbol_stub sections of this type. See “Dynamic
Code Generation” in Mach-O Programming Topics for more information.

 ■ S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization
functions. The standard tools create __DATA,__mod_init_func sections of this type.

 ■ S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module termination
functions. The standard tools create __DATA,__mod_term_func sections of this type.

 ■ S_COALESCED—This section contains symbols that are coalesced by the static linker and
possibly the dynamic linker. More than one file may contain coalesced definitions of the
same symbol without causing multiple-defined-symbol errors.

 ■ S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB. This
section must be placed in a segment containing only zero-filled sections. If you place a
zero-filled section in a segment with non–zero-filled sections, you may cause those sections
to be unreachable with a 31-bit offset. That outcome stems from the fact that the size of a
zero-filled section can be larger than 4 GB (in a 32-bit address space). As a result of this,
the static linker would be unable to build the output file. See segment_command (page 20)
for more information.

The following are the possible attributes of a section:

 ■ S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine instructions.
The standard tools set this flag for the sections __TEXT,__text, __TEXT,__symbol_stub,
and __TEXT,__picsymbol_stub.

 ■ S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine instructions.

 ■ S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in the
table of contents (SYMDEF member) of a static archive library.

Data Types 25
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

 ■ S_ATTR_EXT_RELOC—This section contains references that must be relocated. These
references refer to data that exists in other files (undefined symbols). To support external
relocation, the maximum virtual memory protections of the segment that contains this
section must allow both reading and writing.

 ■ S_ATTR_LOC_RELOC—This section contains references that must be relocated. These
references refer to data within this file.

 ■ S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if the
MH_DYLDLINK flag of the image’s mach_header (page 12) header structure is set.

 ■ S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” in Xcode
User Guide for details.

 ■ S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference code
that is live, but the reference is undetectable.

reserved1
An integer reserved for use with certain section types. For symbol pointer sections and symbol
stubs sections that refer to indirect symbol table entries, this is the index into the indirect table
for this section’s entries. The number of entries is based on the section size divided by the size
of the symbol pointer or stub. Otherwise, this field is set to 0.

reserved2
For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol
stub entries contained in the section. Otherwise, this field is reserved for future use and should
be set to 0.

Discussion
Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object files,
the type and attributes determine how the static linker copies the sections into the final product.
Object file analysis tools (such as otool) use the type and attributes to determine how to read and
display the sections. Some section types and attributes are used by the dynamic linker.

These are important static-linking variants of the symbol type and attributes:

 ■ Regular sections. In a regular section, only one definition of an external symbol may exist in
intermediate object files. The static linker returns an error if it finds any duplicate external symbol
definitions.

 ■ Coalesced sections. In the final product, the static linker retains only one instance of each symbol
defined in coalesced sections. To support complex language features (such as C++ vtables and
RTTI) the compiler may create a definition of a particular symbol in every intermediate object
file. The static linker and the dynamic linker would then reduce the duplicate definitions to the
single definition used by the program.

 ■ Coalesced sections with weak definitions Weak symbol definitions may appear only in coalesced
sections. When the static linker finds duplicate definitions for a symbol, it discards any coalesced
symbol definition that has the weak definition attribute set (see nlist (page 39)). If there are no
non-weak definitions, the first weak definition is used instead. This feature is designed to support
C++ templates; it allows explicit template instantiations to override implicit ones. The C++
compiler places explicit definitions in a regular section, and it places implicit definitions in a
coalesced section, marked as weak definitions. Intermediate object files (and thus static archive
libraries) built with weak definitions can be used only with the static linker in Mac OS X v10.2
and later. Final products (applications and shared libraries) should not contain weak definitions
if they are expected to be used on earlier versions of Mac OS X.

26 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

section_64
Defines the elements used by a 64-bit section. Directly following a segment_command_64 (page 21)
data structure is an array of section_64 data structures, with the exact count determined by the
nsects field of the segment_command_64 structure. Declared in /usr/include/mach-o/loader.h.

struct section_64
{

char sectname[16];
char segname[16];
uint64_t addr;
uint64_t size;
uint32_t offset;
uint32_t align;
uint32_t reloff;
uint32_t nreloc;
uint32_t flags;
uint32_t reserved1;
uint32_t reserved2;

};

Fields
sectname

A string specifying the name of this section. The value of this field can be any sequence of
ASCII characters, although section names defined by Apple begin with two underscores and
consist of lowercase letters (as in __text and __data). This field is fixed at 16 bytes in length.

segname
A string specifying the name of the segment that should eventually contain this section. For
compactness, intermediate object files—files of type MH_OBJECT—contain only one segment,
in which all sections are placed. The static linker places each section in the named segment
when building the final product (any file that is not of type MH_OBJECT).

addr
An integer specifying the virtual memory address of this section.

size
An integer specifying the size in bytes of the virtual memory occupied by this section.

offset
An integer specifying the offset to this section in the file.

align
An integer specifying the section’s byte alignment. Specify this as a power of two; for example,
a section with 8-byte alignment would have an align value of 3 (2 to the 3rd power equals 8).

reloff
An integer specifying the file offset of the first relocation entry for this section.

nreloc
An integer specifying the number of relocation entries located at reloff for this section.

Data Types 27
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flags
An integer divided into two parts. The least significant 8 bits contain the section type, while
the most significant 24 bits contain a set of flags that specify other attributes of the section.
These types and flags are primarily used by the static linker and file analysis tools, such as
otool, to determine how to modify or display the section. These are the possible types:

 ■ S_REGULAR—This section has no particular type. The standard tools create a __TEXT,__text
section of this type.

 ■ S_ZEROFILL—Zero-fill-on-demand section—when this section is first read from or written
to, each page within is automatically filled with bytes containing zero.

 ■ S_CSTRING_LITERALS—This section contains only constant C strings. The standard tools
create a __TEXT,__cstring section of this type.

 ■ S_4BYTE_LITERALS—This section contains only constant values that are 4 bytes long. The
standard tools create a __TEXT,__literal4 section of this type.

 ■ S_8BYTE_LITERALS—This section contains only constant values that are 8 bytes long. The
standard tools create a __TEXT,__literal8 section of this type.

 ■ S_LITERAL_POINTERS—This section contains only pointers to constant values.

 ■ S_NON_LAZY_SYMBOL_POINTERS—This section contains only non-lazy pointers to symbols.
The standard tools create a section of the __DATA,__nl_symbol_ptrs section of this type.

 ■ S_LAZY_SYMBOL_POINTERS—This section contains only lazy pointers to symbols. The
standard tools create a __DATA,__la_symbol_ptrs section of this type.

 ■ S_SYMBOL_STUBS——This section contains symbol stubs. The standard tools create
__TEXT,__symbol_stub and__TEXT,__picsymbol_stub sections of this type. See “Dynamic
Code Generation” in Mach-O Programming Topics for more information.

 ■ S_MOD_INIT_FUNC_POINTERS—This section contains pointers to module initialization
functions. The standard tools create __DATA,__mod_init_func sections of this type.

 ■ S_MOD_TERM_FUNC_POINTERS—This section contains pointers to module termination
functions. The standard tools create __DATA,__mod_term_func sections of this type.

 ■ S_COALESCED—This section contains symbols that are coalesced by the static linker and
possibly the dynamic linker. More than one file may contain coalesced definitions of the
same symbol without causing multiple-defined-symbol errors.

 ■ S_GB_ZEROFILL—This is a zero-filled on-demand section. It can be larger than 4 GB. This
section must be placed in a segment containing only zero-filled sections. If you place a
zero-filled section in a segment with non–zero-filled sections, you may cause those sections
to be unreachable with a 31-bit offset. That outcome stems from the fact that the size of a
zero-filled section can be larger than 4 GB (in a 32-bit address space). As a result of this,
the static linker would be unable to build the output file. See segment_command_64 (page
21) for more information.

The following are the possible attributes of a section:

 ■ S_ATTR_PURE_INSTRUCTIONS—This section contains only executable machine instructions.
The standard tools set this flag for the sections __TEXT,__text, __TEXT,__symbol_stub,
and __TEXT,__picsymbol_stub.

 ■ S_ATTR_SOME_INSTRUCTIONS—This section contains executable machine instructions.

 ■ S_ATTR_NO_TOC—This section contains coalesced symbols that must not be placed in the
table of contents (SYMDEF member) of a static archive library.

28 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

 ■ S_ATTR_EXT_RELOC—This section contains references that must be relocated. These
references refer to data that exists in other files (undefined symbols). To support external
relocation, the maximum virtual memory protections of the segment that contains this
section must allow both reading and writing.

 ■ S_ATTR_LOC_RELOC—This section contains references that must be relocated. These
references refer to data within this file.

 ■ S_ATTR_STRIP_STATIC_SYMS—The static symbols in this section can be stripped if the
MH_DYLDLINK flag of the image’s mach_header (page 12) header structure is set.

 ■ S_ATTR_NO_DEAD_STRIP—This section must not be dead-stripped. See “Linking” in Xcode
User Guide for details.

 ■ S_ATTR_LIVE_SUPPORT—This section must not be dead-stripped if they reference code
that is live, but the reference is undetectable.

reserved1
An integer reserved for use with certain section types. For symbol pointer sections and symbol
stubs sections that refer to indirect symbol table entries, this is the index into the indirect table
for this section’s entries. The number of entries is based on the section size divided by the size
of the symbol pointer or stub. Otherwise, this field is set to 0.

reserved2
For sections of type S_SYMBOL_STUBS, an integer specifying the size (in bytes) of the symbol
stub entries contained in the section. Otherwise, this field is reserved for future use and should
be set to 0.

Discussion
Each section in a Mach-O file has both a type and a set of attribute flags. In intermediate object files,
the type and attributes determine how the static linker copies the sections into the final product.
Object file analysis tools (such as otool) use the type and attributes to determine how to read and
display the sections. Some section types and attributes are used by the dynamic linker.

These are important static-linking variants of the symbol type and attributes:

 ■ Regular sections. In a regular section, only one definition of an external symbol may exist in
intermediate object files. The static linker returns an error if it finds any duplicate external symbol
definitions.

 ■ Coalesced sections. In the final product, the static linker retains only one instance of each symbol
defined in coalesced sections. To support complex language features (such as C++ vtables and
RTTI) the compiler may create a definition of a particular symbol in every intermediate object
file. The static linker and the dynamic linker would then reduce the duplicate definitions to the
single definition used by the program.

 ■ Coalesced sections with weak definitions Weak symbol definitions may appear only in coalesced
sections. When the static linker finds duplicate definitions for a symbol, it discards any coalesced
symbol definition that has the weak definition attribute set (see nlist (page 39)). If there are no
non-weak definitions, the first weak definition is used instead. This feature is designed to support
C++ templates; it allows explicit template instantiations to override implicit ones. The C++
compiler places explicit definitions in a regular section, and it places implicit definitions in a
coalesced section, marked as weak definitions. Intermediate object files (and thus static archive
libraries) built with weak definitions can be used only with the static linker in Mac OS X v10.2
and later. Final products (applications and shared libraries) should not contain weak definitions
if they are expected to be used on earlier versions of Mac OS X.

Data Types 29
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

twolevel_hints_command
Defines the attributes of a LC_TWOLEVEL_HINTS load command. Declared in
/usr/include/mach-o/loader.h.

struct twolevel_hints_command
{

uint32_t cmd;
uint32_t cmdsize;
uint32_t offset;
uint32_t nhints;

};

Fields
cmd

Common to all load command structures. Set to LC_TWOLEVEL_HINTS for this structure.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(twolevel_hints_command).

offset
An integer specifying the byte offset from the start of this file to an array of
twolevel_hint (page 30) data structures, known as the two-level namespace hint table.

nhints
The number of twolevel_hint data structures located at offset.

Discussion
The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint table
to the output file when building a two-level namespace image.

Special Considerations

By default, ld does not include the LC_TWOLEVEL_HINTS command or the two-level namespace hint
table in an MH_BUNDLE file because the presence of this load command causes the version of the
dynamic linker shipped with Mac OS X v10.0 to crash. If you know the code will run only on Mac
OS X v10.1 and later, you should explicitly enable the two-level namespace hint table. See
-twolevel_namespace_hints in the ld man page for more information.

twolevel_hint
Specifies an entry in the two-level namespace hint table. Declared in /usr/include/mach-o/loader.h.

struct twolevel_hint
{

uint32_t isub_image:8,
itoc:24;

};

Fields
isub_image

The subimage in which the symbol is defined. It is an index into the list of images that make
up the umbrella image. If this field is 0, the symbol is in the umbrella image itself. If the image
is not an umbrella framework or library, this field is 0.

itoc
The symbol index into the table of contents of the image specified by the isub_image field.

30 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

Discussion
The two-level namespace hint table provides the dynamic linker with suggested positions to start
searching for symbols in the libraries the current image is linked against.

Every undefined symbol (that is, every symbol of type N_UNDF or N_PBUD) in a two-level namespace
image has a corresponding entry in the two-level hint table, at the same index.

The static linker adds the LC_TWOLEVEL_HINTS load command and the two-level namespace hint table
to the output file when building a two-level namespace image.

By default, the linker does not include the LC_TWOLEVEL_HINTS command or the two-level namespace
hint table in an MH_BUNDLE file, because the presence of this load command causes the version of the
dynamic linker shipped with Mac OS X v10.0 to crash. If you know the code will run only on Mac
OS X v10.1 and later, you should explicitly enable the two-level namespace hints. See the linker
documentation for more information.

lc_str
Defines a variable-length string. Declared in /usr/include/mach-o/loader.h.

union lc_str
{

uint32_t offset;
#ifndef __LP64__
char *ptr;
#endif

};

Fields
offset

A long integer. A byte offset from the start of the load command that contains this string to
the start of the string data.

ptr
A pointer to an array of bytes. At runtime, this pointer contains the virtual memory address
of the string data. The ptr field is not used in Mach-O files.

Discussion
Load commands store variable-length data such as library names using the lc_str data structure.
Unless otherwise specified, the data consists of a C string.

The data pointed to is stored just after the load command, and the size is added to the size of the load
command. The string should be null terminated; any extra bytes to round up the size should be null.
You can also determine the size of the string by subtracting the size of the load command data structure
from the cmdsize field of the load command data structure.

dylib
Defines the data used by the dynamic linker to match a shared library against the files that have linked
to it. Used exclusively in the dylib_command (page 32) data structure. Declared in
/usr/include/mach-o/loader.h.

Data Types 31
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct dylib
{

union lc_str name;
uint_32 timestamp;
uint_32 current_version;
uint_32 compatibility_version;

};

Fields
name

A data structure of type lc_str (page 31). Specifies the name of the shared library.

timestamp
The date and time when the shared library was built.

current_version
The current version of the shared library.

compatibility_version
The compatibility version of the shared library.

Availability
Available in Mac OS X v10.0 and later.

Declared In
loader.h

dylib_command
Defines the attributes of the LC_LOAD_DYLIB and LC_ID_DYLIB load commands. Declared in
/usr/include/mach-o/loader.h.

struct dylib_command
{

uint_32 cmd;
uint_32 cmdsize;
struct dylib dylib;

};

Fields
cmd

Common to all load command structures. For this structure, set to either LC_LOAD_DYLIB,
LC_LOAD_WEAK_DYLIB, or LC_ID_DYLIB.

cmdsize
Common to all load command structures. For this structure, set to sizeof(dylib_command)
plus the size of the data pointed to by the name field of the dylib field.

dylib
A data structure of type dylib (page 31). Specifies the attributes of the shared library.

Discussion
For each shared library that a file links against, the static linker creates an LC_LOAD_DYLIB command
and sets its dylib field to the value of the dylib field of the LC_ID_DYLD load command of the target
library. All the LC_LOAD_DYLIB commands together form a list that is ordered according to location
in the file, earliest LC_LOAD_DYLIB command first. For two-level namespace files, undefined symbol
entries in the symbol table refer to their parent shared libraries by index into this list. The index is
called a library ordinal, and it is stored in the n_desc field of the nlist (page 39) data structure.

32 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

At runtime, the dynamic linker uses the name in the dyld field of the LC_LOAD_DYLIB command to
locate the shared library. If it finds the library, the dynamic linker compares the version information
of the LC_LOAD_DYLIB load command against the library’s version. For the dynamic linker to
successfully link the shared library, the compatibility version of the shared library must be less than
or equal to the compatibility version in the LC_LOAD_DYLIB command.

The dynamic linker uses the timestamp to determine whether it can use the prebinding information.
The current version is returned by the function NSVersionOfRunTimeLibrary to allow you to determine
the version of the library your program is using.

dylinker_command
Defines the attributes of the LC_LOAD_DYLINKER and LC_ID_DYLINKER load commands. Declared in
/usr/include/mach-o/loader.h.

struct dylinker_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str name;

};

Fields
cmd

Common to all load command structures. For this structure, set to either LC_ID_DYLINKER or
LC_LOAD_DYLINKER.

cmdsize
Common to all load command structures. For this structure, set to sizeof(dylinker_command),
plus the size of the data pointed to by the name field.

name
A data structure of type lc_str (page 31). Specifies the name of the dynamic linker.

Discussion
Every executable file that is dynamically linked contains a LC_LOAD_DYLINKER command that specifies
the name of the dynamic linker that the kernel must load in order to execute the file. The dynamic
linker itself specifies its name using the LC_ID_DYLINKER load command.

prebound_dylib_command
Defines the attributes of the LC_PREBOUND_DYLIB load command. For every library that a prebound
executable file links to, the static linker adds one LC_PREBOUND_DYLIB command. Declared in
/usr/include/mach-o/loader.h.

Data Types 33
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct prebound_dylib_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str name;
uint32_t nmodules;
union lc_str linked_modules;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_PREBOUND_DYLIB.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(prebound_dylib_command) plus the size of the data pointed to by the name and
linked_modules fields.

name
A data structure of type lc_str (page 31). Specifies the name of the prebound shared library.

nmodules
An integer. Specifies the number of modules the prebound shared library contains. The size
of the linked_modules string is (nmodules / 8) + (nmodules % 8).

linked_modules
A data structure of type lc_str (page 31). Usually, this data structure defines the offset of a
C string; in this usage, it is a variable-length bitset, containing one bit for each module. Each
bit represents whether the corresponding module is linked to a module in the current file, 1
for yes, 0 for no. The bit for the first module is the low bit of the first byte.

thread_command
Defines the attributes of the LC_THREAD and LC_UNIXTHREAD load commands. The data of this command
is specific to each architecture and appears in thread_status.h, located in the architecture’s directory
in /usr/include/mach. Declared in /usr/include/mach-o/loader.h.

struct thread_command
{

uint32_t cmd;
uint32_t cmdsize;
/* uint32_t flavor;*/
/* uint32_t count; */
/* struct cpu_thread_state state;*/

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_THREAD or LC_UNIXTHREAD.

cmdsize
Common to all load command structures. For this structure, set to sizeof(thread_command)
plus the size of the flavor and count fields plus the size of the CPU-specific thread state data
structure.

34 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

flavor
Integer specifying the particular flavor of the thread state data structure. See the
thread_status.h file for your target architecture.

count
Size of the thread state data, in number of 32-bit integers. The thread state data structure must
be fully padded to 32-bit alignment.

routines_command
Defines the attributes of the LC_ROUTINES load command, used in 32-bit architectures. Describes the
location of the shared library initialization function, which is a function that the dynamic linker calls
before allowing any of the routines in the library to be called. Declared in
/usr/include/mach-o/loader.h. See also routines_command_64 (page 36).

struct routines_command
{

uint32_t cmd;
uint32_t cmdsize;
uint32_t init_address;
uint32_t init_module;
uint32_t reserved1;
uint32_t reserved2;
uint32_t reserved3;
uint32_t reserved4;
uint32_t reserved5;
uint32_t reserved6;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_ROUTINES.

cmdsize
Common to all load command structures. For this structure, set to sizeof(routines_command).

init_address
An integer specifying the virtual memory address of the initialization function.

init_module
An integer specifying the index into the module table of the module containing the initialization
function.

reserved1
Reserved for future use. Set this field to 0.

reserved2
Reserved for future use. Set this field to 0.

reserved3
Reserved for future use. Set this field to 0.

reserved4
Reserved for future use. Set this field to 0.

reserved5
Reserved for future use. Set this field to 0.

Data Types 35
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

reserved6
Reserved for future use. Set this field to 0.

Discussion
The static linker adds an LC_ROUTINES command when you specify a shared library initialization
function using the -init option (see the ld man page for more information).

routines_command_64
Defines the attributes of the LC_ROUTINES_64 load command, used in 64-bit architectures. Describes
the location of the shared library initialization function, which is a function that the dynamic linker
calls before allowing any of the routines in the library to be called. Declared in
/usr/include/mach-o/loader.h.

struct routines_command_64
{

uint32_t cmd;
uint32_t cmdsize;
uint64_t init_address;
uint64_t init_module;
uint64_t reserved1;
uint64_t reserved2;
uint64_t reserved3;
uint64_t reserved4;
uint64_t reserved5;
uint64_t reserved6;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_ROUTINES_64.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(routines_command_64).

init_address
An integer specifying the virtual memory address of the initialization function.

init_module
An integer specifying the index into the module table of the module containing the initialization
function.

reserved1
Reserved for future use. Set this field to 0.

reserved2
Reserved for future use. Set this field to 0.

reserved3
Reserved for future use. Set this field to 0.

reserved4
Reserved for future use. Set this field to 0.

reserved5
Reserved for future use. Set this field to 0.

36 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

reserved6
Reserved for future use. Set this field to 0.

Discussion
The static linker adds an LC_ROUTINES_64 command when you specify a shared library initialization
function using the -init option (see the ld man page for more information).

sub_framework_command
Defines the attributes of the LC_SUB_FRAMEWORK load command. Identifies the umbrella framework
of which this file is a subframework. Declared in /usr/include/mach-o/loader.h.

struct sub_framework_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str umbrella;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_SUB_FRAMEWORK.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(sub_framework_command) plus the size of the data pointed to by the umbrella field.

umbrella
A data structure of type lc_str (page 31). Specifies the name of the umbrella framework of
which this file is a member.

sub_umbrella_command
Defines the attributes of the LC_SUB_UMBRELLA load command. Identifies the named framework as a
subumbrella of this framework. Unlike a subframework, any client may link to a subumbrella. Declared
in /usr/include/mach-o/loader.h.

struct sub_umbrella_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str sub_umbrella;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_SUB_UMBRELLA.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(sub_umbrella_command) plus the size of the data pointed to by the sub_umbrella
field.

sub_umbrella
A data structure of type lc_str (page 31). Specifies the name of the umbrella framework of
which this file is a member.

Data Types 37
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

sub_library_command
Defines the attributes of the LC_SUB_LIBRARY load command. Identifies a sublibrary of this framework
and marks this framework as an umbrella framework. Unlike a subframework, any client may link
to a sublibrary. Declared in /usr/include/mach-o/loader.h.

struct sub_library_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str sub_library;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_SUB_LIBRARY.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(sub_library_command) plus the size of the data pointed to by the sub_library field.

sub_library
A data structure of type lc_str (page 31). Specifies the name of the sublibrary of which this
file is a member.

sub_client_command
Defines the attributes of the LC_SUB_CLIENT load command. Specifies the name of a file that is allowed
to link to this subframework. This file would otherwise be required to link to the umbrella framework
of which this file is a component. Declared in /usr/include/mach-o/loader.h.

struct sub_client_command
{

uint32_t cmd;
uint32_t cmdsize;
union lc_str client;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_SUB_CLIENT.

cmdsize
Common to all load command structures. For this structure, set to
sizeof(sub_client_command) plus the size of the data pointed to by the client field.

client
A data structure of type lc_str (page 31). Specifies the name of a client authorized to link to
this library.

Special Considerations

The ld tool generates a sub_client_command load command in the built product if you pass the
option -allowable_client <name>, where <name> is the install name of a framework or the client
name of a bundle. See the ld man page, specifically about the options -allowable_client and
-client_name, for more information.

38 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

Symbol Table and Related Data Structures

Two load commands, LC_SYMTAB and LC_DYSYMTAB, describe the size and location of the symbol
tables, along with additional metadata. The other data structures listed in this section represent the
symbol tables themselves.

symtab_command
Defines the attributes of the LC_SYMTAB load command. Describes the size and location of the symbol
table data structures. Declared in /usr/include/mach-o/loader.h.

struct symtab_command
{

uint_32 cmd;
uint_32 cmdsize;
uint_32 symoff;
uint_32 nsyms;
uint_32 stroff;
uint_32 strsize;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_SYMTAB.

cmdsize
Common to all load command structures. For this structure, set to sizeof(symtab_command).

symoff
An integer containing the byte offset from the start of the file to the location of the symbol table
entries. The symbol table is an array of nlist (page 39) data structures.

nsyms
An integer indicating the number of entries in the symbol table.

stroff
An integer containing the byte offset from the start of the image to the location of the string
table.

strsize
An integer indicating the size (in bytes) of the string table.

Discussion
LC_SYMTAB should exist in both statically linked and dynamically linked file types.

nlist
Describes an entry in the symbol table for 32-bit architectures. Declared in
/usr/include/mach-o/nlist.h. See also nlist_64 (page 42).

Data Types 39
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct nlist
{

union {
#ifndef __LP64__

char *n_name;
#endif

int32_t n_strx;
} n_un;
uint8_t n_type;
uint8_t n_sect;
int16_t n_desc;
uint32_t n_value;

};

Fields
n_un

A union that holds an index into the string table, n_strx. To specify an empty string (""), set
this value to 0. The n_name field is not used in Mach-O files.

n_type
A byte value consisting of data accessed using four bit masks:

 ■ N_STAB (0xe0)—If any of these 3 bits are set, the symbol is a symbolic debugging table
(stab) entry. In that case, the entire n_type field is interpreted as a stab value. See
/usr/include/mach-o/stab.h for valid stab values.

 ■ N_PEXT (0x10)—If this bit is on, this symbol is marked as having limited global scope.
When the file is fed to the static linker, it clears the N_EXT bit for each symbol with the
N_PEXT bit set. (The ld option -keep_private_externs turns off this behavior.) With Mac
OS X GCC, you can use the __private_extern__ function attribute to set this bit.

 ■ N_TYPE (0x0e)—These bits define the type of the symbol.

 ■ N_EXT (0x01)—If this bit is on, this symbol is an external symbol, a symbol that is either
defined outside this file or that is defined in this file but can be referenced by other files.

Values for the N_TYPE field include:

 ■ N_UNDF (0x0)—The symbol is undefined. Undefined symbols are symbols referenced in
this module but defined in a different module. The n_sect field is set to NO_SECT.

 ■ N_ABS (0x2)—The symbol is absolute. The linker does not change the value of an absolute
symbol. The n_sect field is set to NO_SECT.

 ■ N_SECT (0xe)—The symbol is defined in the section number given in n_sect.

 ■ N_PBUD (0xc)—The symbol is undefined and the image is using a prebound value for the
symbol. The n_sect field is set to NO_SECT.

 ■ N_INDR (0xa)—The symbol is defined to be the same as another symbol. The n_value field
is an index into the string table specifying the name of the other symbol. When that symbol
is linked, both this and the other symbol have the same defined type and value.

n_sect
An integer specifying the number of the section that this symbol can be found in, or NO_SECT
if the symbol is not to be found in any section of this image. The sections are contiguously
numbered across segments, starting from 1, according to the order they appear in the
LC_SEGMENT load commands.

40 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

n_desc
A 16-bit value providing additional information about the nature of this symbol for non-stab
symbols. The reference flags can be accessed using the REFERENCE_TYPE mask (0xF) and are
defined as follows:

 ■ REFERENCE_FLAG_UNDEFINED_NON_LAZY (0x0)—This symbol is a reference to an external
non-lazy (data) symbol.

 ■ REFERENCE_FLAG_UNDEFINED_LAZY (0x1)—This symbol is a reference to an external lazy
symbol—that is, to a function call.

 ■ REFERENCE_FLAG_DEFINED (0x2)—This symbol is defined in this module.

 ■ REFERENCE_FLAG_PRIVATE_DEFINED (0x3)—This symbol is defined in this module and is
visible only to modules within this shared library.

 ■ REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY (0x4)—This symbol is defined in another
module in this file, is a non-lazy (data) symbol, and is visible only to modules within this
shared library.

 ■ REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY (0x5)—This symbol is defined in another
module in this file, is a lazy (function) symbol, and is visible only to modules within this
shared library.

Additionally, the following bits might also be set:

 ■ REFERENCED_DYNAMICALLY (0x10)—Must be set for any defined symbol that is referenced
by dynamic-loader APIs (such as dlsym and NSLookupSymbolInImage) and not ordinary
undefined symbol references. The strip tool uses this bit to avoid removing symbols that
must exist: If the symbol has this bit set, strip does not strip it.

 ■ N_DESC_DISCARDED (0x20)—Sometimes used by the dynamic linker at runtime in a fully
linked image. Do not set this bit in a fully linked image.

 ■ N_NO_DEAD_STRIP(0x20)—When set in a relocatable object file (file type MH_OBJECT) on a
defined symbol, indicates to the static linker to never dead-strip the symbol. (Note that
the same bit (0x20) is used for two nonoverlapping purposes.)

 ■ N_WEAK_REF (0x40)—Indicates that this undefined symbol is a weak reference. If the dynamic
linker cannot find a definition for this symbol, it sets the address of this symbol to 0. The
static linker sets this symbol given the appropriate weak-linking flags.

 ■ N_WEAK_DEF (0x80)—Indicates that this symbol is a weak definition. If the static linker or
the dynamic linker finds another (non-weak) definition for this symbol, the weak definition
is ignored. Only symbols in a coalesced section (page 23) can be marked as a weak
definition.

If this file is a two-level namespace image (that is, if the MH_TWOLEVEL flag of the mach_header
structure is set), the high 8 bits of n_desc specify the number of the library in which this
undefined symbol is defined. Use the macro GET_LIBRARY_ORDINAL to obtain this value and
the macro SET_LIBRARY_ORDINAL to set it. Zero specifies the current image. 1 through 253
specify the library number according to the order of LC_LOAD_DYLIB commands in the file.
The value 254 is used for undefined symbols that are to be dynamically looked up (supported
only in Mac OS X v10.3 and later). For plug–ins that load symbols from the executable program
they are linked against, 255 specifies the executable image. For flat namespace images, the high
8 bits must be 0.

Data Types 41
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

n_value
An integer that contains the value of the symbol. The format of this value is different for each
type of symbol table entry (as specified by the n_type field). For the N_SECT symbol type,
n_value is the address of the symbol. See the description of the n_type field for information
on other possible values.

Discussion
Common symbols must be of type N_UNDF and must have the N_EXT bit set. The n_value for a common
symbol is the size (in bytes) of the data of the symbol. In C, a common symbol is a variable that is
declared but not initialized in this file. Common symbols can appear only in MH_OBJECTMach-O files.

nlist_64
Describes an entry in the symbol table for 64-bit architectures. Declared in
/usr/include/mach-o/nlist.h.

struct nlist_64
{

union {
uint32_t n_strx;

} n_un;
uint8_t n_type;
uint8_t n_sect;
uint16_t n_desc;
uint64_t n_value;

};

Fields
n_un

A union that holds an index into the string table, n_strx. To specify an empty string (""), set
this value to 0.

42 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

n_type
A byte value consisting of data accessed using four bit masks:

 ■ N_STAB (0xe0)—If any of these 3 bits are set, the symbol is a symbolic debugging table
(stab) entry. In that case, the entire n_type field is interpreted as a stab value. See
/usr/include/mach-o/stab.h for valid stab values.

 ■ N_PEXT (0x10)—If this bit is on, this symbol is marked as having limited global scope.
When the file is fed to the static linker, it clears the N_EXT bit for each symbol with the
N_PEXT bit set. (The ld option -keep_private_externs turns off this behavior.) With Mac
OS X GCC, you can use the __private_extern__ function attribute to set this bit.

 ■ N_TYPE (0x0e)—These bits define the type of the symbol.

 ■ N_EXT (0x01)—If this bit is on, this symbol is an external symbol, a symbol that is either
defined outside this file or that is defined in this file but can be referenced by other files.

Values for the N_TYPE field include:

 ■ N_UNDF (0x0)—The symbol is undefined. Undefined symbols are symbols referenced in
this module but defined in a different module. Set the n_sect field to NO_SECT.

 ■ N_ABS (0x2)—The symbol is absolute. The linker does not update the value of an absolute
symbol. Set the n_sect field to NO_SECT.

 ■ N_SECT (0xe)—The symbol is defined in the section number given in n_sect.

 ■ N_PBUD (0xc)—The symbol is undefined and the image is using a prebound value for the
symbol. Set the n_sect field to NO_SECT.

 ■ N_INDR (0xa)—The symbol is defined to be the same as another symbol. The n_value field
is an index into the string table specifying the name of the other symbol. When that symbol
is linked, both this and the other symbol point to the same defined type and value.

n_sect
An integer specifying the number of the section that this symbol can be found in, or NO_SECT
if the symbol is not to be found in any section of this image. The sections are contiguously
numbered across segments, starting from 1, according to the order they appear in the
LC_SEGMENT load commands.

Data Types 43
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

n_desc
A 16-bit value providing additional information about the nature of this symbol. The reference
flags can be accessed using the REFERENCE_TYPE mask (0xF) and are defined as follows:

 ■ REFERENCE_FLAG_UNDEFINED_NON_LAZY (0x0)—This symbol is a reference to an external
non-lazy (data) symbol.

 ■ REFERENCE_FLAG_UNDEFINED_LAZY (0x1)—This symbol is a reference to an external lazy
symbol—that is, to a function call.

 ■ REFERENCE_FLAG_DEFINED (0x2)—This symbol is defined in this module.

 ■ REFERENCE_FLAG_PRIVATE_DEFINED (0x3)—This symbol is defined in this module and is
visible only to modules within this shared library.

 ■ REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY (0x4)—This symbol is defined in another
module in this file, is a non-lazy (data) symbol, and is visible only to modules within this
shared library.

 ■ REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY (0x5)—This symbol is defined in another
module in this file, is a lazy (function) symbol, and is visible only to modules within this
shared library.

Additionally, the following bits might also be set:

 ■ REFERENCED_DYNAMICALLY (0x10)—Must be set for any defined symbol that is referenced
by dynamic-loader APIs (such as dlsym and NSLookupSymbolInImage) and not ordinary
undefined symbol references. The strip tool uses this bit to avoid removing symbols that
must exist: If the symbol has this bit set, strip does not strip it.

 ■ N_DESC_DISCARDED (0x20)—Used by the dynamic linker at runtime. Do not set this bit.

 ■ N_WEAK_REF (0x40)—Indicates that this symbol is a weak reference. If the dynamic linker
cannot find a definition for this symbol, it sets the address of this symbol to 0. The static
linker sets this symbol given the appropriate weak-linking flags.

 ■ N_WEAK_DEF (0x80)—Indicates that this symbol is a weak definition. If the static linker or
the dynamic linker finds another (non-weak) definition for this symbol, the weak definition
is ignored. Only symbols in a coalesced section (page 23) can be marked as a weak
definition.

If this file is a two-level namespace image (that is, if the MH_TWOLEVEL flag of the mach_header
structure is set), the high 8 bits of n_desc specify the number of the library in which this symbol
is defined. Use the macro GET_LIBRARY_ORDINAL to obtain this value and the macro
SET_LIBRARY_ORDINAL to set it. Zero specifies the current image. 1 through 254 specify the
library number according to the order of LC_LOAD_DYLIB commands in the file. For plug–ins
that load symbols from the executable program they are linked against, 255 specifies the
executable image. For flat namespace images, the high 8 bits must be 0.

n_value
An integer that contains the value of the symbol. The format of this value is different for each
type of symbol table entry (as specified by the n_type field). For the N_SECT symbol type,
n_value is the address of the symbol. See the description of the n_type field for information
on other possible values.

Discussion
See discussion in nlist (page 39).

44 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

dysymtab_command
The data structure for the LC_DYSYMTAB load command. It describes the sizes and locations of the
parts of the symbol table used for dynamic linking. Declared in /usr/include/mach-o/loader.h.

struct dysymtab_command
{

uint32_t cmd;
uint32_t cmdsize;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t iundefsym;
uint32_t nundefsym;
uint32_t tocoff;
uint32_t ntoc;
uint32_t modtaboff;
uint32_t nmodtab;
uint32_t extrefsymoff;
uint32_t nextrefsyms;
uint32_t indirectsymoff;
uint32_t nindirectsyms;
uint32_t extreloff;
uint32_t nextrel;
uint32_t locreloff;
uint32_t nlocrel;

};

Fields
cmd

Common to all load command structures. For this structure, set to LC_DYSYMTAB.

cmdsize
Common to all load command structures. For this structure, set to sizeof(dysymtab_command).

ilocalsym
An integer indicating the index of the first symbol in the group of local symbols.

nlocalsym
An integer indicating the total number of symbols in the group of local symbols.

iextdefsym
An integer indicating the index of the first symbol in the group of defined external symbols.

nextdefsym
An integer indicating the total number of symbols in the group of defined external symbols.

iundefsym
An integer indicating the index of the first symbol in the group of undefined external symbols.

nundefsym
An integer indicating the total number of symbols in the group of undefined external symbols.

tocoff
An integer indicating the byte offset from the start of the file to the table of contents data.

ntoc
An integer indicating the number of entries in the table of contents.

modtaboff
An integer indicating the byte offset from the start of the file to the module table data.

Data Types 45
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

nmodtab
An integer indicating the number of entries in the module table.

extrefsymoff
An integer indicating the byte offset from the start of the file to the external reference table
data.

nextrefsyms
An integer indicating the number of entries in the external reference table.

indirectsymoff
An integer indicating the byte offset from the start of the file to the indirect symbol table data.

nindirectsyms
An integer indicating the number of entries in the indirect symbol table.

extreloff
An integer indicating the byte offset from the start of the file to the external relocation table
data.

nextrel
An integer indicating the number of entries in the external relocation table.

locreloff
An integer indicating the byte offset from the start of the file to the local relocation table data.

nlocrel
An integer indicating the number of entries in the local relocation table.

Discussion
The LC_DYSYMTAB load command contains a set of indexes into the symbol table and a set of file offsets
that define the location of several other tables. Fields for tables not used in the file should be set to 0.
These tables are described in “Dynamic Code Generation” in Mach-O Programming Topics.

dylib_table_of_contents
Describes an entry in the table of contents of a dynamic shared library. Declared in
/usr/include/mach-o/loader.h.

struct dylib_table_of_contents
{

uint32_t symbol_index;
uint32_t module_index;

};

Fields
symbol_index

An index into the symbol table indicating the defined external symbol to which this entry
refers.

module_index
An index into the module table indicating the module in which this defined external symbol
is defined.

dylib_module
Describes a module table entry for a dynamic shared library for 32-bit architectures. Declared in
/usr/include/mach-o/loader.h. See also dylib_module_64 (page 48).

46 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct dylib_module
{

uint32_t module_name;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t irefsym;
uint32_t nrefsym;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextrel;
uint32_t nextrel;
uint32_t iinit_iterm;
uint32_t ninit_nterm;
uint32_t objc_module_info_addr;
uint32_t objc_module_info_size;

};

Fields
module_name

An index to an entry in the string table indicating the name of the module.

iextdefsym
The index into the symbol table of the first defined external symbol provided by this module.

nextdefsym
The number of defined external symbols provided by this module.

irefsym
The index into the external reference table of the first entry provided by this module.

nrefsym
The number of external reference entries provided by this module.

ilocalsym
The index into the symbol table of the first local symbol provided by this module.

nlocalsym
The number of local symbols provided by this module.

iextrel
The index into the external relocation table of the first entry provided by this module.

nextrel
The number of entries in the external relocation table that are provided by this module.

iinit_iterm
Contains both the index into the module initialization section (the low 16 bits) and the index
into the module termination section (the high 16 bits) to the pointers for this module.

ninit_nterm
Contains both the number of pointers in the module initialization (the low 16 bits) and the
number of pointers in the module termination section (the high 16 bits) for this module.

objc_module_info_addr
The statically linked address of the start of the data for this module in the __module_info
section in the __OBJC segment.

objc_module_info_size
The number of bytes of data for this module that are used in the __module_info section in the
__OBJC segment.

Data Types 47
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

dylib_module_64
Describes a module table entry for a dynamic shared library for 64-bit architectures. Declared in
/usr/include/mach-o/loader.h.

struct dylib_module_64
{

uint32_t module_name;
uint32_t iextdefsym;
uint32_t nextdefsym;
uint32_t irefsym;
uint32_t nrefsym;
uint32_t ilocalsym;
uint32_t nlocalsym;
uint32_t iextrel;
uint32_t nextrel;
uint32_t iinit_iterm;
uint32_t ninit_nterm;
uint32_t objc_module_info_size;
uint64_t objc_module_info_addr;

};

Fields
module_name

An index to an entry in the string table indicating the name of the module.

iextdefsym
The index into the symbol table of the first defined external symbol provided by this module.

nextdefsym
The number of defined external symbols provided by this module.

irefsym
The index into the external reference table of the first entry provided by this module.

nrefsym
The number of external reference entries provided by this module.

ilocalsym
The index into the symbol table of the first local symbol provided by this module.

nlocalsym
The number of local symbols provided by this module.

iextrel
The index into the external relocation table of the first entry provided by this module.

nextrel
The number of entries in the external relocation table that are provided by this module.

iinit_iterm
Contains both the index into the module initialization section (the low 16 bits) and the index
into the module termination section (the high 16 bits) to the pointers for this module.

ninit_nterm
Contains both the number of pointers in the module initialization (the low 16 bits) and the
number of pointers in the module termination section (the high 16 bits) for this module.

objc_module_info_addr
The statically linked address of the start of the data for this module in the __module_info
section in the __OBJC segment.

48 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

objc_module_info_size
The number of bytes of data for this module that are used in the __module_info section in the
__OBJC segment.

dylib_reference
Defines the attributes of an external reference table entry for the external reference entries provided
by a module in a shared library. Declared in /usr/include/mach-o/loader.h.

struct dylib_reference
{

uint32_t isym:24,
flags:8;

};

Fields
isym

An index into the symbol table for the symbol being referenced.

flags
A constant for the type of reference being made. Use the same REFERENCE_FLAG constants as
described in the nlist (page 39) structure description.

Relocation Data Structures

Relocation is the process of moving symbols to a different address. When the static linker moves a
symbol (a function or an item of data) to a different address, it needs to change all the references to
that symbol to use the new address. The relocation entries in a Mach-O file contain offsets in the file
to addresses that need to be relocated when the contents of the file are relocated. The addresses stored
in CPU instructions can be absolute or relative. Each relocation entry specifies the exact format of the
address. When creating the intermediate object file, the compiler generates one or more relocation
entries for every instruction that contains an address. Because relocation to symbols at fixed addresses,
and to relative addresses for position independent references, does not occur at runtime, the static
linker typically removes some or all the relocation entries when building the final product.

Note: In the Mac OS X x86-64 environment scattered relocations are not used. Compiler-generated
code uses mostly external relocations, in which the r_extern bit is set to 1 and the r_symbolnum field
contains the symbol-table index of the target label.

relocation_info
Describes an item in the file that uses an address that needs to be updated when the address is changed.
Declared in /usr/include/mach-o/reloc.h.

Data Types 49
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct relocation_info
{

int32_t r_address;
uint32_t r_symbolnum:24,

r_pcrel:1,
r_length:2,
r_extern:1,
r_type:4;

};

Fields
r_address

In MH_OBJECT files, this is an offset from the start of the section to the item containing the
address requiring relocation. If the high bit of this field is set (which you can check using the
R_SCATTERED bit mask), the relocation_info structure is actually a
scattered_relocation_info (page 52) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address of the
data of the first segment_command (page 20) that appears in the file (not necessarily the one
with the lowest address). For images with the MH_SPLIT_SEGS flag set, this is an offset from
the virtual memory address of data of the first read/write segment_command (page 20).

r_symbolnum
Indicates either an index into the symbol table (when the r_extern field is set to 1) or a section
number (when the r_extern field is set to 0). As previously mentioned, sections are ordered
from 1 to 255 in the order in which they appear in the LC_SEGMENT load commands. This field
is set to R_ABS for relocation entries for absolute symbols, which need no relocation.

r_pcrel
Indicates whether the item containing the address to be relocated is part of a CPU instruction
that uses PC-relative addressing.

For addresses contained in PC-relative instructions, the CPU adds the address of the instruction
to the address contained in the instruction.

r_length
Indicates the length of the item containing the address to be relocated. The following table lists
r_length values and the corresponding address length.

Address lengthValue

1 byte0

2 bytes1

4 bytes2

4 bytes. See description for the PPC_RELOC_BR14 r_type in
scattered_relocation_info (page 52).

3

r_extern
Indicates whether the r_symbolnum field is an index into the symbol table (1) or a section
number (0).

50 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

r_type
For the x86 environment, the r_type field may contain any of these values:

 ■ GENERIC_RELOC_VANILLA—A generic relocation entry for both addresses contained in data
and addresses contained in CPU instructions.

 ■ GENERIC_RELOC_PAIR—The second relocation entry of a pair.

 ■ GENERIC_RELOC_SECTDIFF—A relocation entry for an item that contains the difference of
two section addresses. This is generally used for position-independent code generation.
GENERIC_RELOC_SECTDIFF contains the address from which to subtract; it must be followed
by a GENERIC_RELOC_PAIR containing the address to subtract.

 ■ GENERIC_RELOC_LOCAL_SECTDIFF—Similar to GENERIC_RELOC_SECTDIFF except that this
entry refers specifically to the address in this item. If the address is that of a globally visible
coalesced symbol, this relocation entry does not change if the symbol is overridden. This
is used to associate stack unwinding information with the object code this relocation entry
describes.

 ■ GENERIC_RELOC_PB_LA_PTR—A relocation entry for a prebound lazy pointer. This is always
a scattered relocation entry. The r_value field contains the non-prebound value of the
lazy pointer.

For the x86-64 environment, the r_type field may contain any of these values:

 ■ X86_64_RELOC_BRANCH—A CALL/JMP instruction with 32-bit displacement.

 ■ X86_64_RELOC_GOT_LOAD—A MOVQ load of a GOT entry.

 ■ X86_64_RELOC_GOT—Other GOT references.

 ■ X86_64_RELOC_SIGNED—Signed 32-bit displacement.

 ■ X86_64_RELOC_UNSIGNED—Absolute address.

 ■ X86_64_RELOC_SUBTRACTOR—Must be followed by a X86_64_RELOC_UNSIGNED relocation.

For PowerPC environments, the r_type field is usually PPC_RELOC_VANILLA for addresses
contained in data. Relocation entries for addresses contained in CPU instructions are described
by other r_type values:

 ■ PPC_RELOC_PAIR—The second relocation entry of a pair. A PPC_RELOC_PAIR entry must
follow each of the other relocation entry types, except for PPC_RELOC_VANILLA,
PPC_RELOC_BR14, PPC_RELOC_BR24, and PPC_RELOC_PB_LA_PTR.

 ■ PPC_RELOC_BR14—The instruction contains a 14-bit branch displacement. If the r_length
is 3, the branch was statically predicted by setting or clearing the Y bit depending on the
sign of the displacement or the opcode.

 ■ PPC_RELOC_BR24—The instruction contains a 24-bit branch displacement.

 ■ PPC_RELOC_HI16—The instruction contains the high 16 bits of a relocatable expression.
The next relocation entry must be a PPC_RELOC_PAIR specifying the low 16 bits of the
expression in the low 16 bits of the r_value field.

 ■ PPC_RELOC_LO16—The instruction contains the low 16 bits of an address. The next relocation
entry must be a PPC_RELOC_PAIR specifying the high 16 bits of the expression in the low
(not the high) 16 bits of the r_value field.

 ■ PPC_RELOC_HA16—Same as the PPC_RELOC_HI16 except the low 16 bits and the high 16
bits are added together with the low 16 bits sign-extended first. This means if bit 15 of the
low 16 bits is set, the high 16 bits stored in the instruction are adjusted.

Data Types 51
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

 ■ PPC_RELOC_LO14—Same as PPC_RELOC_LO16 except that the low 2 bits are not stored in
the CPU instruction and are always 0. PPC_RELOC_LO14 is used in 64-bit load/store
instructions.

 ■ PPC_RELOC_SECTDIFF—A relocation entry for an item that contains the difference of two
section addresses. This is generally used for position-independent code generation.
PPC_RELOC_SECTDIFF contains the address from which to subtract; it must be followed by
a PPC_RELOC_PAIR containing the section address to subtract.

 ■ PPC_RELOC_LOCAL_SECTDIFF—Similar to PPC_RELOC_SECTDIFF except that this entry
refers specifically to the address in this item. If the address is that of a globally visible
coalesced symbol, this relocation entry does not change if the symbol is overridden. This
is used to associate stack unwinding information with the object code this relocation entry
describes

 ■ PPC_RELOC_PB_LA_PTR—A relocation entry for a prebound lazy pointer. This is always a
scattered relocation entry. The r_value field contains the non-prebound value of the lazy
pointer.

 ■ PPC_RELOC_HI16_SECTDIFF—Section difference form of PPC_RELOC_HI16.

 ■ PPC_RELOC_LO16_SECTDIFF—Section difference form of PPC_RELOC_LO16.

 ■ PPC_RELOC_HA16_SECTDIFF—Section difference form of PPC_RELOC_HA16.

 ■ PPC_RELOC_JBSR—A relocation entry for the assembler synthetic opcode jbsr, which is
a 24-bit branch-and-link instruction using a branch island. The branch displacement is
assembled to the branch island address and the relocation entry indicates the actual target
symbol. If the linker is able to make the branch reach the actual target symbol, it does.
Otherwise, the branch is relocated to the branch island.

 ■ PPC_RELOC_LO14_SECTDIFF—Section difference form of PPC_RELOC_LO14.

scattered_relocation_info
Describes an item in the file—using a nonzero constant in its relocatable expression or two addresses
in its relocatable expression—that needs to be updated if the addresses that it uses are changed. This
information is needed to reconstruct the addresses that make up the relocatable expression’s value
in order to change the addresses independently of each other. Declared in
/usr/include/mach-o/reloc.h.

52 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct scattered_relocation_info
{
#ifdef __BIG_ENDIAN__

uint32_t r_scattered:1,
r_pcrel:1,
r_length:2,
r_type:4,
r_address:24;

int32_t r_value;
#endif /* __BIG_ENDIAN__ */
#ifdef __LITTLE_ENDIAN__

uint32_t r_address:24,
r_type:4,
r_length:2,
r_pcrel:1,
r_scattered:1;

int32_t r_value;
#endif /* __LITTLE_ENDIAN__ */
};

Fields
r_scattered

If this bit is 0, this structure is actually a relocation_info (page 49) structure.

r_address
In MH_OBJECT files, this is an offset from the start of the section to the item containing the
address requiring relocation. If the high bit of this field is clear (which you can check using
the R_SCATTERED bit mask), this structure is actually a relocation_info (page 49) structure.

In images used by the dynamic linker, this is an offset from the virtual memory address of the
data of the first segment_command (page 20) that appears in the file (not necessarily the one
with the lowest address). For images with the MH_SPLIT_SEGS flag set, this is an offset from
the virtual memory address of data of the first read/write segment_command (page 20).

Since this field is only 24 bits long, the offset in this field can never be larger than 0x00FFFFFF,
thus limiting the size of the relocatable contents of this image to 16 megabytes.

r_pcrel
Indicates whether the item containing the address to be relocated is part of a CPU instruction
that uses PC-relative addressing.

For addresses contained in PC-relative instructions, the CPU adds the address of the instruction
to the address contained in the instruction.

r_length
Indicates the length of the item containing the address to be relocated. A value of 0 indicates
a single byte; a value of 1 indicates a 2-byte address, and a value of 2 indicates a 4-byte address.

r_type
Indicates the type of relocation to be performed. Possible values for this field are shared between
this structure and the relocation_info data structure; see the description of the r_type field
in the relocation_info (page 49) data structure for more details.

r_value
The address of the relocatable expression for the item in the file that needs to be updated if the
address is changed. For relocatable expressions with the difference of two section addresses,
the address from which to subtract (in mathematical terms, the minuend) is contained in the
first relocation entry and the address to subtract (the subtrahend) is contained in the second
relocation entry.

Data Types 53
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

Discussion
Mach-O relocation data structures support two types of relocatable expressions in machine code and
data:

 ■ Symbol address + constant. The most typical form of relocation is referencing a symbol’s address
with no constant added. In this case, the value of the constant expression is 0.

 ■ Address of section y – address of section x + constant. The section difference form of relocation.
This form of relocation supports position-independent code.

Static Archive Libraries

This section describes the file format used for static archive libraries. Mac OS X uses a format derived
from the original BSD static archive library format, with a few minor additions. See the discussion
for the ranlib data structure for more information.

ranlib
Defines the attributes of a static archive library symbol table entry. Declared in
/usr/include/mach-o/ranlib.h.

struct ranlib
{

union
{

uint32_t ran_strx;
#ifndef __LP64__

char *ran_name;
#endif
} ran_un;
uint32_t ran_off;

};

Fields
ran_strx

The index number (zero-based) of the string in the string table that follows the array of ranlib
data structures.

ran_name
The byte offset, from the start of the file, at which the symbol name can be found. This field is
not used in Mach-O files.

ran_off
The byte offset, from the start of the file, at which the header line for the member containing
this symbol can be found.

Discussion
A static archive library begins with the file identifier string !<arch>, followed by a newline character
(ASCII value 0x0A). The file identifier string is followed by a series of member files. Each member
consists of a fixed-length header line followed by the file data. The header line is 60 bytes long and
is divided into five fixed-length fields, as shown in this example header line:

grapple.c 999514211 501 20 100644 167 `

54 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

The last 2 bytes of the header line are a grave accent (`) character (ASCII value 0x60) and a newline
character. All header fields are defined in ASCII and padded with spaces to the full length of the field.
All fields are defined in decimal notation, except for the file mode field, which is defined in octal.
These are the descriptions for each field:

 ■ The name field (16 bytes) contains the name of the file. If the name is either longer than 16 bytes
or contains a space character, the actual name should be written directly after the header line and
the name field should contain the string #1/ followed by the length. To keep the archive entries
aligned to 8 byte boundaries, the length of the name that follows the #1/ is rounded to 8 bytes
and the name that follows the header is padded with null bytes.

 ■ The modified date field (12 bytes) is taken from the st_time field returned by the stat system
call.

 ■ The user ID field (6 bytes) is taken from the st_uid field returned by the stat system call.

 ■ The group ID field (6 bytes) is taken from the st_gid field returned by the stat system call.

 ■ The file mode field (8 bytes) is taken from the st_mode field returned by the stat system call.
This field is written in octal notation.

 ■ The file size field (8 bytes) is taken from the st_size field returned by the stat system call.

The first member in a static archive library is always the symbol table describing the contents of the
rest of the member files. This member is always called either __.SYMDEF or __.SYMDEF SORTED (note
the two leading underscores and the period). The name used depends on the sort order of the symbol
table. The older variant—__.SYMDEF—contains entries in the same order that they appear in the object
files. The newer variant—__.SYMDEF SORTED— contains entries in alphabetical order, which allows
the static linker to load the symbols faster.

The __.SYMDEF and .__SORTED SYMDEF archive members contain an array of ranlib data structures
preceded by the length in bytes (a long integer, 4 bytes) of the number of items in the array. The array
is followed by a string table of null-terminated strings, which are preceded by the length in bytes of
the entire string table (again, a 4-byte long integer).

The string table is an array of C strings, each terminated by a null byte.

The ranlib declarations can be found in /usr/include/mach-o/ranlib.h.

Special Considerations

Prior to the advent of libtool, a tool called ranlib was used to generate the symbol table. ranlib
has since been integrated into libtool. See the man page for libtool for more information.

Universal Binaries and 32-bit/64-bit PowerPC Binaries

The standard development tools accept as parameters two kinds of binaries:

 ■ Object files targeted at one architecture. These include Mach-O files, static libraries, and dynamic
libraries.

 ■ Binaries targeted at more than one architecture. These binaries contain compiled code and data
for one of these system types:

 ❏ PowerPC-based (32-bit and 64-bit) Macintosh computers. Binaries that contain code for both
32-bit and 64-bit PowerPC-based Macintosh computers are are known as PPC/PPC64 binaries.

Data Types 55
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

 ❏ Intel-based and PowerPC-based (32-bit, 64-bit, or both) Macintosh computers. Binaries that
contain code for both Intel-based and PowerPC-based Macintosh computers are known as
universal binaries.

Each object file is stored as a continuous set of bytes at an offset from the beginning of the binary.
They use a simple archive format to store the two object files with a special header at the beginning
of the file to allow the various runtime tools to quickly find the code appropriate for the current
architecture.

A binary that contains code for more than one architecture always begins with a fat_header (page
56) data structure, followed by two fat_arch (page 56) data structures and the actual data for the
architectures contained in the file. All data in these data structures is stored in big-endian byte order.

fat_header
Defines the layout of a binary that contains code for more than one architecture. Declared in the
header /usr/include/mach-o/fat.h.

struct fat_header
{

uint32_t magic;
uint32_t nfat_arch;

};

Fields
magic

An integer containing the value 0xCAFEBABE in big-endian byte order format. On a big-endian
host CPU, this can be validated using the constant FAT_MAGIC; on a little-endian host CPU, it
can be validated using the constant FAT_CIGAM.

nfat_arch
An integer specifying the number of fat_arch (page 56) data structures that follow. This is
the number of architectures contained in this binary.

Discussion
The fat_header data structure is placed at the start of a binary that contains code for multiple
architectures. Directly following the fat_header data structure is a set of fat_arch (page 56) data
structures, one for each architecture included in the binary.

Regardless of the content this data structure describes, all its fields are stored in big-endian byte order.

fat_arch
Describes the location within the binary of an object file targeted at a single architecture. Declared in
/usr/include/mach-o/fat.h.

56 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

struct fat_arch
{

cpu_type_t cputype;
cpu_subtype_t cpusubtype;
uint32_t offset;
uint32_t size;
uint32_t align;

};

Fields
cputype

An enumeration value of type cpu_type_t. Specifies the CPU family.

cpusubtype
An enumeration value of type cpu_subtype_t. Specifies the specific member of the CPU family
on which this entry may be used or a constant specifying all members.

offset
Offset to the beginning of the data for this CPU.

size
Size of the data for this CPU.

align
The power of 2 alignment for the offset of the object file for the architecture specified in cputype
within the binary. This is required to ensure that, if this binary is changed, the contents it retains
are correctly aligned for virtual memory paging and other uses.

Discussion
An array of fat_arch data structures appears directly after the fat_header (page 56) data structure
of a binary that contains object files for multiple architectures.

Regardless of the content this data structure describes, all its fields are stored in big-endian byte order.

Data Types 57
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

58 Data Types
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Mac OS X ABI Mach-O File Format Reference

This table describes the changes to Mac OS X ABI Mach-O File Format Reference.

NotesDate

Added details about Mach-O files targeted for the Mac OS X x86-64
environment.

2007-04-26

Added relocation details to “Relocation Data Structures” (page 49).

Updated the cputype field of the mach_header_64 (page 14) structure.

Updated the r_type bit of the relocation_info (page 49) structure.

Added DWARF debugging-format information to the introduction.

Added information about the uuid_command load command.2006-10-03

Added uuid_command (page 20) and updated load_command (page 17).

Added information about IA-32-specific structures and the file type for
dSYM files.

2006-09-05

Corrected the mach_header_64 description.2006-03-08

Replaced cross-references to “Indirect Addressing” throughout to
cross-references to “Dynamic Code Generation” in Mach-O Programming
Topics.

Removed CPU_SUBTYPE_I386_ALL from the description for the cpusubtype
field of mach_header_64 (page 14).

Changed title from "Mach-O File Format Reference."2005-11-09

Added the phrase “Mac OS X application binary interface (ABI) to the
introduction to raise this document’s visibility in searches.

Clarified terminology for binaries that contain object files for more than
one architecture.

2005-08-11

59
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Added information on 64-bit support in the Mach-O file format. Removed
the "Overview of the Runtime Architecture" and "Runtime Conventions
for PowerPC" chapters. That content was placed in "Mac OS X Runtime
Overview" and "PowerPC Runtime Programming Guide," respectively.

2005-04-29

Changed title to Mach-O File Format Reference.

Updated symbol declarations to match headers.

Added information on parameter passing, section names, dynamic linking
of libraries, dead-code stripping flags, and GPR11. Removed dynamic
linking functions reference. Minor technical and editorial corrections
throughout.

2004-08-31

Added information on MH_SUBSECTIONS_VIA_SYMBOLS flag to
“mach_header” (page 12) struct.

Added information on the S_ATTR_STRIP_STATIC_SYMS,
S_ATTR_LIVE_SUPPORT, and S_ATTR_NO_DEAD_STRIP flags to
“section” (page 23) struct.

Added explanation of PPC_RELOC_LO14_SECTDIFF to
scattered_relocation_info (page 52).

Added clarification on when callers put parameters in the stack, in addition
to placing them in registers. See .

Added details on parameter passing for single-member structures. See
“PowerPC Runtime Architecture Guide”.

Refined description of GPR11. See “PowerPC Runtime Architecture Guide”.

Specified correct sizes for composite parameters that are preceded by
padding to make them 4 bytes in size. See “PowerPC Runtime Architecture
Guide”.

Added note to introduction in “Mach-O File Format Reference” (page 12)
indicating that compilers can define additional section names that are not
shown in Table 1 (page 10).

Corrected example of a private external symbol. See “Mach-O Programming
Topics”.

Corrected ranges for unsigned int, unsigned long, and unsigned long
long, and vector unsigned int. See “PowerPC Runtime Architecture
Guide”.

Corrected framework-building example. See “Mach-O Programming
Topics”.

Removed “Mach-O Dynamic Linking Functions Reference” chapter and
placed its content in Mach-O Runtime Reference.

60
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

NotesDate

Added description of new API for Mac OS X version 10.3.2003-08-07

Incorporated developer feedback. Updated code-generation examples.2003-01-01

Fixed bugs 2462895, 2749339, 2909989, 2910422, 2921574.

More developer feedback. Document weak definitions and weak references
(new for 10.2). Substantially update the glossary. Other tweaks and
additional material. Clarify common vs. coalesced symbol definitions.

2002-07-01

ABI: Rewrote position-independent and indirect code section, incorporating
correct examples and separating PIC and indirect code generation. Add
C99 _Bool data type. See “PowerPC Runtime Architecture Guide”.

Fixed bugs 2909989, 2910422, and 2921574.

This was a preliminary draft distributed with the WWDC 2002 developer
tools.

2002-05-01

Incorporated many corrections from developer review. More to come.

By popular demand, added some common usage scenarios to map runtime
features to the options in the standard Mac OS X tools that implement
those features. To satisfy a related popular demand, this information is
collected in a separate chapter, which allows users of third-party tool sets
to ignore it. This chapter is currently unfinished, and the overview chapter
is yet to be modified to cross-reference it.

Updated umbrella framework description to better match reality.

Added long double and long long return value information. Removed
last vestiges of CFM. Rewrote data alignment section, incorporating the
correct rules (inherited from IBM’s xlc compiler) for power alignment
mode, and adding new natural alignment mode.

This was a preliminary draft distributed with the April 2002 Developer
Tools CD.

2002-04-01

61
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

62
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

C

copy-on-write (COW) 10

D

dylib structure 31
dylib_command structure 32
dylib_module structure 46
dylib_module_64 structure 48
dylib_reference structure 49
dylib_table_of_contents structure 46
dylinker_command structure 33
dysymtab_command structure 45

F

fat_arch structure 56
fat_header structure 56

L

lc_str union 31
load_command structure 17

M

mach_header structure 12
mach_header_64 structure 14
memory

freeing 10

N

nlist structure 39
nlist_64 structure 42

P

prebound_dylib_command structure 33

R

ranlib structure 54
relocation entries 49
relocation_info structure 49
routines_command structure 35
routines_command_64 structure 36

S

scattered_relocation_info structure 52
section structure 23
section_64 structure 27
segment_command structure 20
segment_command_64 structure 21
sub_client_command structure 38
sub_framework_command structure 37
sub_library_command structure 38
sub_umbrella_command structure 37
symtab_command structure 39

T

thread_command structure 34
twolevel_hint structure 30
twolevel_hints_command structure 30

63
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

Index

U

uuid_command structure 20

64
2007-04-26 | © 2003, 2007 Apple Inc. All Rights Reserved.

I N D E X

	Mac OS X ABI Mach-O File Format Reference
	Contents
	Figures and Tables
	Mac OS X ABI Mach-O File Format Reference
	Overview
	Basic Structure
	Header Structure and Load Commands
	Segments
	Sections

	Data Types
	Header Data Structure
	mach_header
	mach_header_64

	Load Command Data Structures
	load_command
	uuid_command
	segment_command
	segment_command_64
	section
	section_64
	twolevel_hints_command
	twolevel_hint
	lc_str
	dylib
	dylib_command
	dylinker_command
	prebound_dylib_command
	thread_command
	routines_command
	routines_command_64
	sub_framework_command
	sub_umbrella_command
	sub_library_command
	sub_client_command

	Symbol Table and Related Data Structures
	symtab_command
	nlist
	nlist_64
	dysymtab_command
	dylib_table_of_contents
	dylib_module
	dylib_module_64
	dylib_reference

	Relocation Data Structures
	relocation_info
	scattered_relocation_info

	Static Archive Libraries
	ranlib

	Universal Binaries and 32-bit/64-bit PowerPC Binaries
	fat_header
	fat_arch

	Revision History
	Index
	C
	D
	F
	L
	M
	N
	P
	R
	S
	T
	U

