44/ &

SECURITY ANALYSIS

AUGUST
15, 2005

This tutorial aims to collate information from a variety of
sources and present it in a way which is accessible to
beginners. Although detailed in parts, it is oriented towards
reverse code engineering and superfluous information has
been omitted.

Portable Executable
“Ile Format — A
Reverse Engineer View

Goppit

(f'

HTTP://WWW.CODEBREAKERS-JOURNAL.COM

Higher
olfsels

PE File
Unmapped Data

Jreloe section

other sections

JAext seetion

Slrllnl Table

DOS Heador

In Memery

DOS Header

Legal Information

The information contained herein is not a license, either expressly or impliedly, to any
intellectual property owned or controlled by any of the authors or developers of Dissection
Labs. The information contained herein is provided on an "AS IS" basis and to the
maximum extent permitted by applicable law, this information is provided AS IS AND
WITH ALL FAULTS, and the authors and developers of Dissection Labs hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not
limited to, any (if any) implied warranties, duties or conditions of merchantability, of
fitness for a particular purpose, of accuracy or completeness of responses, of results, of
workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the
contribution.

ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
REGARD TO DISSECTION LABS PUBLISHED WORKS.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF DISSECTION LABS BE LIABLE TO ANY
OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,
INDIRECT, OR PUNITIVE OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright 2004/2005 and published by the CodeBreakers-Journal. Single print or
electronic copies for personal use only are permitted. Reproduction and distribution
without permission is prohibited.

This article can be found at http://www.CodeBreakers-Journal.com.

1. Table of Contents

©CONOGOABN

Introduction 5
Basic Structure 7
The DOS Header 11
The PE Header 13
The Data Directory 24
The Section Table 26
The PE File Sections 28
The Export Section 32
The Import Section 38
The Loader 44
Navigating Imports on Disk 47
Adding Code to a PE File 54
Adding Import to an Executable 61
Introduction to Packers 71
Infection of PE Files by Viruses 83
Conclusion 85
Relative Virtual Addressing Explained 87
References & Bibliography 91
Tools Used 93
Appendix: Complete PE Offset Reference 95

2. Introduction

This tutorial aims to collate information from a variety of sources and present it in a way
which is accessible to beginners. Although detailed in parts, it is oriented towards reverse
code engineering and superfluous information has been omitted. You will see | have
borrowed heavily from various published works and all authors are remembered with
gratitude in the reference section at the end.

PE is the native Win32 file format. Every win32 executable (except VxDs and 16-bit DLLS)
uses PE file format. 32bit DLLs, COM files, OCX controls, Control Panel Applets (.CPL files)
and .NET executables are all PE format. Even NT's kernel mode drivers use PE file format.

Why do we need to know about it? 2 main reasons. Adding code to executables (e.g.
keygen injection or adding functionality) and manually unpacking executables. With
respect to the latter, most shareware nowadays comes "packed" in order to reduce size
and to provide an added layer of protection.

In a packed executable, the import tables are usually destroyed and data is often
encrypted. The packer inserts code to unpack the file in memory upon execution, and then
jumps to the original entry point of the file (where the original program actually starts
executing). If we manage to dump this memory region after the packer finished unpacking
the executable, we still need to fix the sections and import tables before our app will run.
How will we do that if we don’t even know what the PE format is?

The example executable | have used throughout this text is BASECALC.exe, a very useful
app from fravia's site for calculating and converting decimal, hex, binary and octal. It is
coded in Borland Delphi 2.0 which makes it ideal as an example to illustrate how Borland
compilers leave the OriginalFirstThunks null (more on this later).

3.Basic Structure

The picture shows the basic structure of a PE file.

DOS MZ header

DOS stub

PE header

Section table

m

m

Section __.

m

At a minimum, a PE file will have 2 sections; one for code and the other for data. An
application for Windows NT has 9 predefined sections named .text, .bss, .rdata, .data,
.rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need all of these
sections, while others may define still more sections to suit their specific needs.

The sections that are most commonly present in an executable are:

e Executable Code Section, named .text (Micro$oft) or CODE (Borland)

e Data Sections, named .data, .rdata, or .bss (Micro$oft) or DATA (Borland)
e Resources Section, named .rsrc

e Export Data Section, named .edata

¢ Import Data Section, named .idata

e Debug Information Section, named .debug

The names are actually irrelevant as they are ignored by the OS and are present only for
the convenience of the programmer. Another important point is that the structure of a PE
file on disk is exactly the same as when it is loaded into memory so if you can locate info
in the file on disk you will be able to find it when the file is loaded into memory.

However it is not copied exactly into memory. The windows loader decides which parts
need mapping in and omits any others. Data that is not mapped in is placed at the end of
the file past any parts that will be mapped in e.g. Debug information.

Also the location of an item in the file on disk will often differ from its location once loaded
into memory because of the page-based virtual memory management that windows uses.
When the sections are loaded into RAM they are aligned to fit to 4Kb memory pages, each
section starting on a new page. Virtual memory is explained below.

In Memary

_ 1

other sections

PE File

* Unmapped Data
1

other sections
Jtext section

Section Table
Higher ; D% Header
sffsats D% Header aldre

Higher

The concept of virtual memory is that instead of letting software directly access physical
memory, the processor and OS create an invisible layer between the two. Every time an
attempt is made to access memory, the processor consults a "page table" that tells the
process which physical memory address to actually use. It wouldn’t be practical to have a
table entry for each byte of memory (the page table would be larger than the total
physical memory), so instead processors divide memory into pages. This has several
advantages:

1) It enables the creation of multiple address spaces. An address space is an isolated page
table that only allows access to memory that is pertinent to the current program or
process. It ensures that programs are completely isolated from one another and that an
error causing one program to crash is not able to poison another program's address space.

2) It enables the processor to enforce certain rules on how memory is accessed. Sections
are needed in PE files because different areas in the file are treated differently by the
memory manager when a module is loaded. At load time, the memory manager sets the
access rights on memory pages for the different sections based on their settings in the
section header. This determines whether a given section is readable, writable, or
executable. This means each section must typically start on a fresh page.

However, the default page size for Windows is 4096 bytes (1000h) and it would be
wasteful to align executables to a 4Kb page boundary on disk as that would make them
significantly bigger than necessary. Because of this, the PE header has two different
alignment fields; Section alignment and file alignment. Section alignment is how sections
are aligned in memory as above. File alignment (usually 512 bytes or 200h) is how
sections are aligned in the file on disk and is a multiple of disk sector size in order to
optimize the loading process.

3) It enables a paging file to be used on the harddrive to temporarily store pages from the
physical memory whilst they are not in use. For instance if an app has been loaded but
becomes idle, its address space can be paged out to disk to make room for another app

which needs to be loaded into RAM. If the situation reverses, the OS can simply load the
first app back into RAM and resume execution where it left off. An app can also use more
memory than is physically available because the system can use the hard drive for
secondary storage whenever there is not enough physical memory.

When PE files are loaded into memory by the windows loader, the in-memory version is
known as a module. The starting address where file mapping begins is called an
HMODULE. A module in memory represents all the code, data and resources from an
executable file that is needed for execution whilst the term process basically refers to an
isolated address space which can be used for running such a module.

10

4. The DOS Header

All PE files start with the DOS header which occupies the first 64 bytes of the file. It's there
in case the program is run from DOS, so DOS can recognize it as a valid executable and
run the DOS stub which is stored immediately after the header. The DOS stub usually just
prints a string something like "This program must be run under Microsoft Windows" but it
can be a full-blown DOS program. When building an application for Windows, the linker
links a default stub program called WINSTUB.EXE into your executable. You can override
the default linker behavior by substituting your own valid MS-DOS-based program in place
of WINSTUB and using the -STUB: linker option when linking the executable file.

The DOS header is a structure defined in the windows.inc or winnt.h files. (If you have an
assembler or compiler installed you will find them in the \include\ directory). It has19
members of which magic and Ifanew are of interest:

IMAGE DOS HEADER 3TRUCT

e_magic WORD 2

e chlp WORD ?
E_cp WORD 2

e crilco WoRD ?

& cparhdr WoORD ?

e _minalloc WORD 2

e _maxalloc WoRD ?

e 33 WORD 2

e _=p WORD ?

e caum WoRD 2

e ip WORD 3

e CS WoRD ?

e lfarle WORD 2

£ _Ovno WoRD ?

e res WoORD 4 dup(?)
& _oemid WORD 2

e oeminfo WoRD ?

& _resz WoORD 10 dup(?)
e _lfanew DWORD 7

IMAGE DOS HEADER ENDS

In the PE file, the magic part of the DOS header contains the value 4Dh, 5Ah (The letters
"Mz" for Mark Zbikowsky one of the original architects of MS-DOS) which signifies a valid
DOS header. MZ are the first 2 bytes you will see in any PE file opened in a hex editor
(See example below.)

As we can see from its definition above, Ifanew is a DWORD which sits at the end of the
DOS header directly before the DOS stub begins. It contains the offset of the PE header,
relative to the file beginning. The windows loader looks for this offset so it can skip the
DOS stub and go directly to the PE header.

[NOTE: DWORD ("double word™) = 4 bytes or 32bit value, WORD = 2 bytes or 16bit

11

value, sometimes you will also see dd for DWORD, dw for WORD and db for byte]

The definitions are helpful as they tell us the size of each member. This allows us to locate
information of interest by counting the number of bytes from the start of the section or
any other identifiable point.

As we said above, the DOS header occupies the first 64 bytes of the file - ie the first 4
rows seen in the hexeditor in the picture below. The last DWORD before the DOS stub
begins contains 00h 01h 00h 00h. Allowing for reverse byte order this gives us 00 00 01
00h which is the offset where the PE header begins. The PE header begins with its
signature 50h, 45h, 00h, O0h (the letters "PE" followed by two terminating zeroes).

If in the Signature field of the PE header, you find an NE signature here rather than a PE,
you're working with a 16-bit Windows New Executable file. Likewise, an LE in the signhature
field would indicate a Windows 3.x virtual device driver (VxD). An LX here would be the
mark of a file for 0OS/2 2.0.

0000ao00h: 4D 5& 50 OO0
0000d010h: BS 00 00 Qo
000000&20h: 00 OO0 00 ao
00000030h: 00 00 00 a0
QO000040k: | BEA 10 00 OFE
00000050h: | 54 68 69 73
00000060k |74 20 a2 a5
Q000007Y0h: | 62 &6E 33 3E
000000s80h: 00 OO0 00 ao
o00gao20h: 00 OO0 00 ao
000000&a0h: 00 OO0 00 Qo e eaaeeeeaaa e e h
000000kb0h: 00 OO0 00 ao P T s a s a s
QO00000=0k: OO0 OO 00 o0 I R RFEF R R
000000d0oh: 00 OO0 00 ;

000000e0h:

: This progrsm muas T
; t be run under W I
poindzL it

We will discuss this in the next section.

12

5.The PE Header

The PE header is the general term for a structure named IMAGE_NT_HEADERS. This
structure contains essential info used by the loader. IMAGE_NT_HEADERS has 3 members
and is defined in windows.inc thus:

IMAGE NT HEADERS| STRUCT

Signature DWORD 2
FileHeader INAGE FILE HEADER <>
| OptinnalHeader| IMAGE OPTIONAL HEADER3IZ <>

TMAGE WT HEALDERZ ENDS

Signature is a DWORD containing the value 50h, 45h, 00h, OOh ("PE" followed by two
terminating zeroes).

FileHeader is the next 20 bytes of the PE file and contains info about the physical layout &
properties of the file e.g. number of sections. OptionalHeader is always present and forms
the next 224 bytes. It contains info about the logical layout inside the PE file e.g.
AddressOfEntryPoint. Its size is given by a member of FileHeader. The structures of these
members are also defined in windows.inc

FileHeader is defined as follows:

IMAGE FILE HEADER STRUCT

Machine WoORD ?
NuwberOfZections WoRD ?
Timebate3tamp DWORD ?
PointerToZyiboolTakle DWORD ?
Nurber of3ymhols DWORD ?
SizelfOptionalHeader WORD 2
Characteristics WoRD ?

TMAGE FILE HEADER END3I

Most of these members are not of use to us but we must modify NumberOfSections if we
add or delete any sections in the PE file. Characteristics contains flags which dictate for
instance whether this PE file is an executable or a DLL. Back to our example in the
Hexeditor, we can find NumberOfSections by counting a DWORD and a WORD (6 bytes)
from the start of the PE header (to allow for the Signature and Machine members):

13

T § 7 3 4§ € €& 7 0 9 2 b c de f
ooooo000k: 4D S5A 50 00 02 00 OO0 OO0 04 OO0 OF OO FF FF OO OO ;2 MZP. ... o.e . i
ooooo0010k: BS OO 0O OO OO OO OO OO0 40 00 1k 00 OO0 OO OO OO ;2 . eew.. B .an
Qo0000Z20k: OO0 OO QOO OO OO OO0 OO0 OO0 00 00 00 00 00 00 00 00 2 v . e e e e e e e ennnns
0000003 0Kk: 00 OO OO0 OO0 00 00 00 OO0 00 00 00 00 00 01 00 00 2 @ f i e e e nensnnnns
ooooo040k: BA 10 OO0 OE 1F B4 09 CD 21 BS 01 4CZ CD 21 90 90 ; = ...'.i!A.Li!DD
ooo000050h: 54 65 69 73 20 V0 Ve eF 67 Y2 61 6D 20 6D V5 V3 ; This program mus
oo0oo0&e0R: 74 20 62 65 20 72 75 6E Z0 75 6E 64 65 72 20 57 ; t bhe run under W
00000070h: &9 6E 33 32 0D 0L 24 537 00 00 OO0 00 OO0 OO0 00 00 @ in32. .57 .. .eenn.
0000008 0k: 00 OO OO0 OO0 00 00 Q00 OO0 00 00 00 00 00 00 00 00 2 @i e e e nennsnnnns
oo000o0020Kk: 00 00O OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 2 @i e e e nennsnnnnas
0o00000a0k: OO0 OO QOO OO OO OO0 OO0 OO0 00 00 00 00 00 00 00 00 2 v . e e e e e e e nennans
000000k 0Kk: OO0 OO OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 2 @i e e e nennssnnnas
o00000e0Rk: OO0 OO OO0 OO0 00 00 00 OO0 00 00 OO0 00 00 00 00 00 2 @i e e e e nensnnnns
Qoo0000d0k: OO0 OO QOO OO0 OO0 OO0 OO0 00 00 OO0 00 00 OO0 OO0 00 00 7 e e eenoesnnnnnnns
000000e0h: OO0 OO OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 00 2 @i e e e e nennnnnns
000000£0k: 00 OO0 OO0 OO0 00 00 QQ a0 00 00 OO0 00 00 OO0 00 00 7 @ . e e e e nnnennnns
oo0o0o0100k: 50 45 00 00 4C I:IlI:II:I 19 5E 4z ZA 00 OO0 OO0 0O ; PE..L...."EB*
00000110k: 00 OO OO0 OO0 EO OO0 o 81 0B 01 02 19 00 A0 Q02 oo ; LALEO.

This can be verified by using any number of different (freeware) PE tools. For instance in

PEBrowsePro:

A E3EE®%EA S &HE >

D05 Header
File Header

-3 Section:

+
+-£3 Imp
+-£=F Resources

[55 File Image

DEFALLT

Or in LordPE:

Basic PE Header |nformation

EntrpPoint; Im
Imagek aze: Im
Sizelflmage: Im
BaselfCode: Im
Baselfliata: Im

Sectiondlignment; | 00007000

Filedligrirment: 00000200
b agic: o1oe

[5E Optional Header

CURREMT PATH

Subspstemn:

Murnber0fS ections:
Timel ateS tamp:
SizelfHeaders:
Characteristics:
Checksurn:

Size0 fOptionalH eader: DoED

HumOfRvadndSizes:

eckions - & item

ok

(4TS
i 7| - |
o

Save

Sections
Directaries
FLC
TDSC

Caompare
L

el

00000010 | + | - |

14

Or even from the "Subsystem” button of PEID:

Basic Information

EntryPaint: |0002A0B4 subSyskern: | 0002
ImageBase: | 00400000 NumberOFSectiDns:

SizeCfImage: | 00030000 TimeDateStamp: | 24425E19
Base(OfCode: 00001000 SizeOfHeaders: | 00000400

BaseCfData; |0002B000 Characteristics: |§15E
SectionAlignment: | 00001000 Checksum: | 00000000

FileAlignment: | 00000200 SizeCfCptionalHeader: |00ED
Magic: | 0108 MurmOfR vafndSizes; (00000010

NOTE: PEID is an extremely useful tool - its main function is to scan executables and
reveal the packer which has been used to compress/protect them. It also has the Krypto
ANALyser plugin for detecting the use of cryptography in the executable e.g. CRC, MD5,
etc. It can also utilise a user-defined list of packer signatures. This is the first tool to be
used when embarking on any unpacking session.

Moving on to OptionalHeader, this takes up 224 bytes, the last 128 of which contain the
Data Directory. Its definition is as follows:

IMAGE OPTICOMNAL HEADER3Z 3ITRUCT

Magic WORD
MajorLinkervVersion EYTE
HinorLinkervVersion E¥TE
SGize0fCode DWORD
FizeQOfInitializedlata DWORD
Size0fUninitializedbata DWORD
Address0fEntryPoint DWoORD
BazelfCode DWORD
BaseOfData DWORD
ImagebBase DWoORD
Sectionlligrnment DWORD
Filellignment DWoORD

MajorOperatingdystemVersion WORD
HinorOperatingl3vyvatenmVWersion WORD

L I I e T B B I s

MajorImageVersion WORD

Hinor ImageVersion WORD
Hajor3ubsystemVersion WORD
MHinorZubsystemWersion WORD
Win3ZVersionWalue DWORD

FizeQf Image DWoORD
ZizeOfHeaders= DWORD
Check3um DWORD
Subhsystem WORD
IllCharacteristics WORD
ZizeQf3itackReserve DWORD
ZizeQf3tackComnit DWORD
SizeQfHeapReserve DWORD
SJize0fHeapCommit DWoORD
LoaderF lags DWoORD
NuttherofRwabndiizes DWORD ?
Datalirectory TMAGE DATA DIRECTORY

TMAGE OPTICHAL HEADER3Z END3

15

AddressOfEntryPoint -- The RVA of the first instruction that will be executed when the PE
loader is ready to run the PE file. If you want to divert the flow of execution right from the
start, you need to change the value in this field to a new RVA and the instruction at the
new RVA will be executed first. Executable packers usually redirect this value to their
decompression stub, after which execution jumps back to the original entry point of the
app - the OEP. Of further note is the Starforce protection in which the CODE section is not
present in the file on disk but is written into virtual memory on execution. The value in this
field is therefore a VA (see appendix for further explanation).

ImageBase -- The preferred load address for the PE file. For example, if the value in this
field is 400000h, the PE loader will try to load the file into the virtual address space
starting at 400000h. The word "preferred"” means that the PE loader may not load the file
at that address if some other module already occupied that address range. In 99% of
cases it is 400000h.

SectionAlignment -- The granularity of the alignment of the sections in memory. For
example, if the value in this field is 4096 (1000h), each section must start at multiples of
4096 bytes. If the first section is at 401000h and its size is 10 bytes, the next section
must be at 402000h even if the address space between 401000h and 402000h will be
mostly unused.

FileAlignment -- The granularity of the alignment of the sections in the file. For example,
if the value in this field is 512 (200h), each section must start at multiples of 512 bytes. If
the first section is at file offset 200h and the size is 10 bytes, the next section must be
located at file offset 400h: the space between file offsets 522 and 1024 s
unused/undefined.

SizeOflmage -- The overall size of the PE image in memory. It's the sum of all headers
and sections aligned to SectionAlignment.

SizeOfHeaders -- The size of all headers + section table. In short, this value is equal to
the file size minus the combined size of all sections in the file. You can also use this value
as the file offset of the first section in the PE file.

DataDirectory -- An array of 16 IMAGE_DATA DIRECTORY structures, each relating to an
important data structure in the PE file such as the import address table. This important
structure will be discussed in the next section.

The overall layout of the PE Header can be seen from the following picture in the
hexeditor. Note the DOS header and the parts of the PE header are always the same size
(and shape) when viewed in the hexeditor, the DOS STUB can vary in size:

16

00000020h: OO0 OO0
00000030h: 00 OO0

e e e D e e
00000000k: [4D 54 50 00 02 OO OO DO 04 OO OF OO FF FF OO DO|: MZF......... N
00000010k: |B8 00 00 OO0 OO OO0 00 00 40 OO 14 00 00 00 00 oof: ,....... CEA—

00 00 00 00 00 a0 a0 00 00 00 00 a0 a0 00} ... evnnnnnns
00 00 00 00 00 00 00 00 00 00 00 01 00 00 7 «... e vnnnnnns

00000040h: (BA 10
00000050h: |54 68
000000&60h: |74 20
00000070h: |69 6E
00000080h: (00 OO0
0000002 0h: (00 OO0
Q00000=0h: jO0 OO0
000000k0h: (00 OO0
000000c0h: (00 OO0
000000d0h: (00 OO0
000000e0h: (00 OO0
Q00000£0h: JO0 OO0

00 OE 1F E4 09 CD 21 B2 01 4C CD 21 30 9d|: =.... .I',.Li'0O0
63 73 20 70 V2 6F &7 Y2 al el 20 &l 75 V3 |; This program mus
g2 65 20 72 75 6E Z0 Y5 gE &4 65 72 20 57|; t be run under W
33 32 OD OA 24 37 00 OO0 OO0 OO OO0 OO OO0 OO in32..487........
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 000 & .. eennnsnsnnnns
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 OO0 & . eennnsnsnnnns
00 00 OO0 00 00 a0 00 00 00 00 00 00 00 O0f: «... e vevnnnnnns
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 OO0 & . eennnsnsnnnns
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 OO0 & . eennnsnsnnnns
00 oo 00 00 00 00 00 00 00 00 00 00 OO0 O00; & .. eennnsnsnnnns
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 OO0 & . eennnsnsnnnns
00 00 00 00 00 00 00 00 00 00 00 00 00 O08: ... vevnnnnnns

00000100h: |50 45
00000110h: (00 OO0
00000120h: |00 DE
00000130h: (00 EO
00000140h: (01 OO0
00000150h: (00 DO
00000160h: (00 OO0
00000170k (OO OO0

00 0oOf4c 01 0% 00 19 S5E 42 24 00 00 00 00y PE..L...."B¥....
00 00 EO0 OO0 8E S1/0B 01 02 19 00 A0 02 00):&.20..... it
o0 00 o0 0o oo 00 B4 AD 02 00 00 10 dd aoj: F...... e
02 00 00 00 40 00 0O 10 00 00 00 02 00 00 .7 .. f.eeeenan,

00 oo 00 00 00 00 04 00 00 00 OO0 00 OO0 000 & .. ennnsnsnnnns
03 00 00 04 00 00 00 00 00 00 02 00 00 oo ; .B......eeeeens

00000150h: j00 Do
00000150h: jod oo
000001=0h: JO0 10
000001k0h: jo0d oo
000001c0h: jO00 OO0
Q00001d0h: JOO 00
000001e0h: jo0d o0
000001£f0h: JO0 00

10 00 00 40 00 00 00 00 10 00 00 10 00 o000 ; B i waaaaeass
o0 00 10 00 do DDlDD 00 00 00 00 a0 00 00 . .veeeennnennnns
02 00 1E 13 00 00 00 40 03 00 00 3E 00 ooOp;: .B....... s st
00 oo 00 00 00 00 00 00 00 00 OO0 00 OO0 O0f; & .. ennnnnnnnns
03 00 04 25 00 00 00 00 00 00 0d dod ao oof:

00 oo o0 00 oo o0 00 oo 00 00 o0 00 od 00 f—-es-ee-reeeeeeeeerr
03 00 13 00 00 00 00 00 00 00 OO0 00 OO0 O0f; & .. evnn s nnnns
00 00 00 00 00 00 OO0 00 00 00 00 00 00 O0F; &... e rnnnnnas
00 oo o0 00 00 00 00 00 00 00 00 00 00 O0F; ... ewee s nnnas
00 00 o0 od oo DD|43 4F 44 45 00 00 Q0 00 ;@ CODE. ...

00000200h: 35 SE
00000210h: 00 OO0
OO000220h: 44 41

Besides the PE tools

02 00 00 10 00 00 00 A0 02 00 00 04 00 00 ; "Z2.cevees sennas
00 oo 00 00 00 00 00 00 00 00 20 00 00 60 ;@ o eeeennns i
54 41 00 00 00 OO0 D4 06 00 00 OO0 BO 02 00 : DATA....H....°%..

mentioned above, our favourite Ollydbg can also parse the PE headers

into a meaningful display. Open our example in Olly and Press the M button or Alt+M to
open the memory map - this shows how the sections of the PE file have been mapped into

memory:
Address | Size (= Sect ion| Contains Tupe Aococess |Initial |Mapped as
BE4EEEEE | BEEE] BEE | BASECHLC FE header Imag B1EE1882 | R RlE
HE4E1 868 | DOHZABEE | BASECALC | CODE code Imag B18E18682 R RUWE
HE42B6888 | DODE 1888 | BASECALC | DATA data Imag BlBE1862 R RUWE
HE42CHEE | DO0H 1888 | BASECALS | BSS Imag B18E18682 R RUWE
HE420888 | DODE2888 | BASECALE | . idata | imports Imag B18E18682 R RUWE
BE42FBEE | o001 888 | BASECALS | .t ls Imag B1EE1686Z2 R RUE
HE4386868 | DO0H 1888 | BASECALE | .rdata Imag B18E18682 R RUE
HE431 068 | DOEE3EEE | BASECALE | .reloc |relocations | Imag B18816882 R RUWE
BE434868 | BEEE9EEE | BASECALS | .rsrc | resources Imag B18@1882 | R RUWE

Now rightclick on PE header and select Dump in CPU. Next in the hex window, rightclick
again and select special then PE header:

17

Address [Hex dump

GR4EE640| BA 16 88 @E IF B4 @3 CD 21 B8 @1 4C|CD 21
BR4EE65E| 54 65 69 7328 7@ 72 6F &7 72 61 6D 28 6D
BR4EE650| 74 28 62 65 28 72 75 OE 20 75 BE 64|65 72
OR4EE67e| 69 6E 33 32 B0 BA 24 37 @8 G0 00 09 00 06
OR4EE650| BB GE BR 06 B3 90 G 0D 08 00 GO 60 09 06
OR4EE050| B8 GE BE 08 B3 B0 G 0O GG 00 0O 60 09 06
OR4EE0R0| BB BE BE 06 B3 90 G 0O 08 00 09 60 00 06
OR4EE0ED | BB GE BR BE B3 00 G 0O 08 00 OO 60 09 06
OR4EO6CH| B8 GE BR GO B3 00 G 00 GG 00 0O 00 00 06
400000 B8 B8 B0 00 B3 00 OB 69 09 03 69 00 00 09
OR4EE0ED | BB GE GO 06 B3 00 G 00 GG 00 0O 60 09 06
OR4EE0FD| BB GE BR GO B3 00 G 00 GG 08 0D 00 09 06
ARd4En16n| 58 45 B8 B8 4C @1 63 BA 19 SE 42 2A 69 66
BE<aE1 16| 26
BE<EE1 20| 28
BA<4EE136| 00
BE<EE148| 81
BR<466150) 88

ASCIT
BEE00E0) 40 GH G GF B2 B0 B8 08 04 08 GF 0@ FF FF G0 00 [NZF.6... .. Backup i
BE4EEE10| BS DR BB BB 0O DO DA G0 48 BB 1A BB B9 PO BE BA|D....... SChAn0E Search for »
BE4EHAZ0| BR BE BE GE PG 96 O3 GR GE GF G5 B9 BE DR BE BE| .o ..oo..o...
BE4EEAS0| BR BB BE BB PO DO DA DR DR GF BB GO BE B1 BB BB o ko ’

[5] A,
28 98| k. AY. oGl =tee
¥S 73| This program mus

28 57|t be run under || » Hex 3
BE B8 in32. o5 s cannnns
SS SS Teuxk [3
R A L b
L 1
T = = | . Long r
Dol el Float >
G o BELILEG; i ga. s, || Disassemble

B ... 0. A0SESE, 28,

Special

Appearance k

Cammand

|.-’-'-.na|_l,lsing BASECALC: 1046 heurstical procedures, 847 callz to known, 233 calls to gueszsed functions

Now you should see this:

Address |Hex dump Data Comment

AEdEEiEaEl 5@ 45 B8 B8 HSCII "PE™ FE 5Lgnature [FE

bodEE1a4(4CH1 B14C Mach ine = IHHEE_FILE_HHEHIHE_ISSE
BE4EELEE) B2EE DN BEES HumberOfSect ions = 8

AE4EE1ES| 195E422R OO 2A425E19 TimeDateStanp = 2A425E19

BE4EELIEC| BRDDEEEE OO0 BEEEaa88 PninterTnSymbanable =g

HE4EEL1E| BADDEEEE OO0 BEEEaEaaE MHumberffSymbols = @

BE4EE114) E@QE oWl BEEA SLEEDFDptLDnalHeader = Ed .
bodEEl 16 SESL oW S18E Characteristics = EHEEUTHBLE_IHHEE SZBIT_MA
bodEE1 18 BBl oW B168E MagicHumber = PE3Z2

BE4EE1 1A B2 OB B2 MajorLinkerlersion = 2

BE4EE11E] 19 OB 19 MinorLinkerlersion = 19 [(25.]
HE4EELIC| BARDEZEE OO0 BEEZAEEE SizelfCode = 2ABBE (172832,]

HE4EEL 26| BA0EDDEER OO0 BEEEDESS Size0fInitializedData = DEDH (B6832.)
BE4EEL 24| BRDDEEEE OO0 BEEEaa8aa8 Size0fUninitializedData = A

HE4EE1 28| B4ADBZ2EE OO0 BEE2A0B4 AddressfEntryPoint = ZAOE4

BE4EELZC| BEal0EEEE OO0 BEEE168688 BazelfCode = 1068

HE4EE1SE| BAEDDZEE OO0 BEEZ2BE8E8 BazelfData = 2EQE8

HE4EE1 34| BRDE4EEE OO0 B8488888 ImageBase = 4006008

HE4EE1SE] B8 l00EEE OO0 BEEE168688 SectionAlignment = 1888

HE4EELSC| BAEZOEEE OO0 BEEEaazZaa8 FileAlignment = 288

bEdEE148(AloEE Ol EEE1 MajorgSlersion = 1

HE4EEL42| BADE oW BEEE MinordSlersion = @

BEdEEl 44| BA0E Ol BEEE MajorImagelersion = @

BE4EE14E) BREE oWl BEEa MinorImagelersion = @

BE4EE1 4] B40E oWl BEEd MajorSubswstemlersion = 4

HE4EEL4H| BADE oW BEEE MinorSubsystemlersion = @

AE4EEL4C| BRDEEEEE OO0 BEEEaa88 Reserwed

HE4EE1EE| BACEDSEE OO0 BEE3CESS Size0fImage = SCEBE (249344,
HE4EE1ES | BADIEEEER OO0 BEEEE4EE SizelfHeaders = 488 [(1824.]

HE4EE1IEE| BADDEEEE OO0 BEEEaaa8 CheckSum = @

HE4EEIEC| B200 oW BEEz Subswstem = IMAGE_SUBSYSTEM_WIHDOWS_GUI
HE4EEIEE| BADE Ol BEEE OLLCharacteristics = @

HE4EELEE| BADE]1DEE OO0 BE8188888 SizelfStackReserve = 100006 (1842576,
HE4EELE4 | BA4EEEEE OO0 BEEa4888 SizelfStackCommit = 4888 (16324.1
HE4EE1ES| BADE]1DEE OO 8818686888 SizelfHeapReserwe = 1686600 (1848576,
AE4EELIEC| BEl0EEEE OO0 BEEE16888 SizelfHeapCommit = 1888 (4896.)
HE4EELFE| BRDEEEEE OO0 BEEEaaaaa8 LoaderFlags = @

BE4EEL 74| 1 AEEEEEE OO0 BEEEaa1a8 HumberOfRuaAndSizes = 18 (16.)
HE4EEL 7S] BADDEEEE OO0 BEEEEa88 Export Table address = @

BE4EEL T BADD00EE OO0 BEEEEEaE Export Table size = @

HE4EE1SE| BA0EEZEE OO0 BEEz20a8a8 Import Table address = ZODOH
HE4EE1S4 | 1E1S00EE OO0 BEEE1Z1E Import Table size = 181E (£174.)
HEdEELEE] BA4EE3EE OO0 BEEZ4EE88 Fesource Table address = 3408
Commane j

|.-’-'-.na|_l,lsing BASECALC: 1046 heurnstical procedures, 347 callz to known, 233 calls to gueszsed functions

There are some specific points of interest in the optional header. If the last 2 members are

both given bogus values, eg

LoaderFlags = ABDBFFDEh
NumberOfRvaAndSizes = DFFFDDDEh

Olly will determine the binary is a bad image and will eventually run the app without
breaking at the entry point. If you were working with a virus then you would be infected.
To avoid this when analyzing malware, open the app in the hexeditor and check the
header first. If the NumberOfRvaAndSizes field alone is changed back to 10h the problem

18

is solved. A bogus value in this field can also cause some versions of Softice to reboot.

In addition the SizeOfRawData field in the section header can be given a very high value
for one of the sections. This will then cause difficulties for many debugging and
disassembling tools.

Another strange twist exists in the story of the PE header. Some of you may have noticed
there is a section of garbage data between the DOS stub and the PE header in files linked
by Micro$ofts Linker. The origin of this data has been discussed in at least 3 forums and
although it is not necessary to know about it, it is interesting so | will outline the details
here.

PE files produced using M$ development tools contain extra bytes in the DOS stub inserted
by the linker Link.exe at compile time. In all cases, the penultimate DWORD is "Rich".
This data is not present in files produced with other linkers (eg Borland, GCC, fasm, etc).
This behavior is exhibited by all versions of M$ Link.exe from v5.12.8078 which is part of
the MASM32 package, up to v7.10.3077 which ships with the latest Visual C++ packages.

The data includes encrypted codes which identify the components used to compile the PE
file. It is said to have led to the prosecution of a virus writer as it allowed M$ to prove that
the virus was compiled on his PC.

The dword after "Rich" is a key generated by the linker which repeats several times in the
garbage data. When we compile a program the compiler puts the string "@comp.id"
followed by a DWORD-sized compiler ID number in our obj file. When we link our obj file
the linker extracts the comp.id number and XORs it with the key and writes it in the
"garbage" as the 2nd DWORD before "Rich".

The "@comp.id" variables are hard coded:

ML.EXE Ver.6.14.8444 -> comp.id is 1220FC (You can search: FC2012)
ML.EXE Ver.7.00.9466 -> comp.id is 4024FA (search: FA2440)

ML.EXE Ver.7.10.2179 -> comp.id is OF0883 (search: 83080F)

ML.EXE Ver.7.10.3077-> comp.id is OFOCO5 (search: 050COF)

C++ Optimizing Compiler Version 12.00.8804 for 80x86 ->comp.id is 0B2306

The 1st DWORD before "Rich" is the key XORed with a hard coded constant 536E6144h. If
we search "@comp.id" in our obj file and substitute the DWORD after it with zeroes we'll
see that the second DWORD before "Rich" is equal to the key (DWORD after "Rich").

Here is an example of a simple "hello world™ type program coded in MASM32 and open in
the hexeditor. The extra bytes are highlighted:

19

[e Al G e TR s D
00000000k: 4D 5S4 90 00 O3 00 OO0 00 04 00 00 OO0 FF FF OO0 OO0 ; MZ) o..ee e v,
ooooo010k: BES OO OO0 OO0 OO0 OO OO OO 40 00 00 00 00 00 00 00 ;e eewwes [——
0o0000020k: OO0 OO OO OO0 OO OO OO OO0 OO0 OO0 00 00 00 00 00 00 7 @ v e e e e e e nnennens
0000003 0k: OO0 OO OO0 OO0 OO0 OO0 OO 00 00 OO0 OO0 00 BO OO0 OO0 00 2 ie e e eeennns A
ooo00040k: OE 1F BA OE OO B4 09 CD 21 B3 01 4C CD 21 54 68 ; ..°..'.i!A.LI!Th
gooooos0h: 69 73 20 70 V2 eF 67 Y2 61 el 20 63 61 6E 6E 6F @ is progrsmm cahno
oO000060KR: 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 ; t khe run in DOS
QO00O0Y0k: 6D 6F 64 65 ZE OD OD 04 24 00 00 00 00 00 00 00 : Y0 Cl B e S emarmarars
ooooo0s0k: |5 65 FD C3 19 04 93 9B 19 04 93 9B 19 04 93 9B]E?E..“)..“). =
00000090h: |97 1B 80 9B 11 04 93 9B ES5 24 81 9B 15 04 93 9B ; —.€:. . &850 »..™
000000&a0k: |52 69 63 65 12 04 253 95 00 00 OO0 OO OO0 OO0 OO0 00 ; Riche o™ Yeeewnnnns
oo0000k0OKk: S50 45 00 OO0 4C 01 03 00 9E 25 99 42 00 00 OO0 00 ; PE..L. z ™R
oo0000e0k: OO OO OO OO EO OO OF 01 OB 01 05 OC OO0 02 00 oo ; L U
oo0000dA0Rk: OO0 04 00 00 00 OO0 OO0 00 00 10 00 00 00 10 00 00 2 @ s i e e e ennmnnns
000000e0h: OO0 Z0 00 OO0 OO0 00 40 00 00 10 00 00 00 02 00 00 ; & c.ew Bl oooon.
gooo000f0k: 04 OO0 OO0 OO0 O49 OO0 OO 00 09 00 00 00 00 00 00 00 F @ h e e e e e e nnennnns
00000100k: 00 40 00 00 OO0 04 00 OO0 9B CA 00 00 02 00 00 00 ;@ Jf@...... B,
O0000110k: OO0 OO 10 00 00 10 00 00 00 00 10 00 00 10 00 00 2 @ e i e e e e s e enmnnnas
0o0000120k: OO0 OO OO OO0 10 00 OO 0O 00 00 00 00 OO0 00 00 00 7 ce e eenasnnsnnnns
oo000130k: 10 20 00 00O 3C 00 00O 00 OO0 OO0 0o 00 OO0 oo oo oo o R TR
00000140k: OO0 OO0 OO0 OO0 OO OO0 OO QOO0 00 00 00 00 00 00 00 00 F v e e e e e nnennens
Oo0000150k: OO0 OO OO0 OO0 OO0 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 2 @i e e e e ennmnnns
Oo0000160k: OO0 OO OO0 OO OO0 OO OO0 OO0 OO0 00 OO0 00 00 00 00 00 2 @ s i e e eeseenmnnns
goo000170k: OO0 OO OO OO0 OO0 OO OO OO0 OO0 00 00 00 00 00 00 00 F @ h e e e e e e nnennens
oo000180k: OO0 OO OO0 OO OO0 OO OO0 OO0 00 20 00 00 10 00 00 00 2 @i e e eene smnnaas
oo000190k: OO0 OO OO0 OO0 OO0 OO0 OO0 OO0 00 00 OO0 00 00 00 00 00 2 @i e e e e eenmnnns
go0001a0k: OO0 OO OO OO OO0 OO OO QOO EZE 74 65 78 74 00 00 OO0 ; @ueeewnss Lext
0O00001k0OKk: 26 00 00 00 OO0 10 00O OO0 OO0 02 00 00 00 04 00 00 2 Eeeweneensamnnnas

Fortunately it is possible to patch the

linker to stop this behaviour. There is a utility called

SignFinder.exe by Asterix which allows you to find quickly the code which needs patching
in any version of Link.exe. Using v5.12.8078 from MASM32 as an example:

File

000451 0cC

S E——

EILIME.EXE

Signature Finder

B

Ext |

Findl: |
b

So open Link.exe in Olly and press Ctrl+G. Enter 0044510C (the address from signfinder
above + ImageBase of Link.exe which is 400000). Then highlight the add instruction as
shown, rightclick and select binary=>fill with NOPs:

20

Address

Hex dump

Disassembly

| Comment:

G445 180
BE445111
BE445117
BE44511E
Ba445110
BE445122
BE445129
B844512E
BE445128
BE445132
Ba445129
BE44513E
BE44512E
BE44512F
BE445145
BE445142
BE445140
BE44514E
BE44514F

. EZ &FREFFFF

. SBE2D EBB1B00g
. 8994424 18

. B3CE

« 29250 E4818088
» FF1E l@lil4660
. HBES4BF4SEE

o Td B33

. CFP45 34 FFFFFFFR
~EB @0

» 8DEE 324

. B2

. FF15 22114668

. S3C4 B4

» 804424 48

. SBCD

. 58
. FF15 B28F4200

It should look like this:

| Bddress |Hen dump

CALL LIMEK.GBE43FC28

MO EC, DWORD PTR S55: CEEP+1ER]
MOV DWORD FPTR S5: [ESP+161,EAX
ADD ECk,EAX

HOY OWORD FT| Backup
CALL DWORD P

MOU AL, BYTE Copy
TEST AL, AL

Binary

JE SHORT LI
MOU DWORD FT

NImCHENE Assomble
FUSH ED% Label
BT Coonen
5 Eo seon
FUSH ERX Hit trace

CALL DWorD P

|Dlsaeeembly

LLINK. B843FCEE

Edit
Fill with 00's

Binary copy
Binary paste

I

BE445180
BE445111
AE445117
BE4451 1B
BE44511C
BE445110
BE445122

. EE2 EFHEFFFF
. 2B2D _EBBl0o0g
. 894424 1A

28 MOP
L] MOP
. 2330 E4B810000 MO O
» FF1E 18114008

CALL LIHNEK.BE43FC28
MOL EC, DWORD PTR SS: CEBFP+1E@]
MOL DWORD PTR S55:[ESP+1@81, EAX

0O PTR S5: [EEBF+1E4],ECH
CALL DWORD PTR DS: [<&MSUCRT. _tzset:]

Registers [FF

CtrH+E

BEREREER
P31 ZFFER
FLABEESY
FFFDCEER
61 2FFC4
BE1ZFFF@
FFFFFFEF

38
==

Azs
AiE
H23
A2a
a3
aluls]

=2 o
T A S

Finally rightclick again and select copy to executable=>all modifications. Then click "copy
all" and rightclick in the new window that pops up and select save file. The other versions
of link.exe have the same code sequence at different locations which is patched in the

same way.

If we use the patched linker to recompile the

bytes have gone:

same example program we see the extra

O P (e N
00000000h: 4D S& 90 00 03 00 00 00 04 00 00 00 FF FF 00 OO ;¢ MEZl o ewwuw.. v,
Oooo0010h: ES OO0 OO0 OO0 OO0 00 OO0 00 40 00 00 OO0 00 00 00 00 ;7 [R
0O0000020Kk: 00 Q0 OO0 00 00 00 OO0 Q0 00 00 00 00 00 00 00 00 7 e ee e v annnsanns
0000003 0hk: 00 OO0 OO0 OO OO OO OO0 OO0 OO0 00 00 00 S0 00 00 00 2 v eeeenennnas €...
oo0o00040h: OE 1F EA OE OO0 B4 09 CD 21 EBS 01 4C CD 21 54 65 ; ..°..'.i!A.Li!Th
00000050h: 62 73 20 7?0 72 oF 67 72 6l 6D 20 63 61 6E 6E 6F ; is program canno
ooooo0e0h: 74 20 62 65 Z0 72 75 6E Z0 69 BE 20 44 4F 53 20 ; © he run in DoO3
00000070h: 6D AF A4 A5 ZE OD OD O&L 24 00 00 00 OO0 00 OO0 00 ; mode....8.......
oooooQE0h: 50 45 00 00 4C 01 03 o0 C1 42 C°7 42 00 00 00 00 ; PE.LL AECE
00000090h: 00 OO0 QOO0 00 EQO OO0 OF 01 OB 01 05 0OC 00 02 00 00 7 v eee@unnnnnnnnns
Ooo000a0h: OO0 O4 OO0 OO OO OO OO0 OO0 OO0 10 00 00 00 10 00 00 7 & e e i e i s e enesnns
000000k0Oh: 00 20 00 00 OO 00 40 00 00 10 00 00 00 02 00 00 @ . .. fee.eooo...
o00000c0h: 04 OO0 00 OO 04 00 00 00 O4 00 00 00 00 00 00 00 2 e eeesemansannns
000000d0Oh: 00 40 00 OO0 00 02 00 00 2R A5 00 OO0 02 00 OO0 00 ; JB...... B arapmm
000000e0h: OO0 OO0 10 00 0O 10 00 00 00 00 10 00 00 10 00 00 2 e e e s ennssannns
O00O000f0h: OO0 OO0 00 OO0 10 00 00 00 OO0 00 00 00 00 00 00 00 ¢ @i e e s i e e enennns
ooo00100hk: 10 20 00 OO0 3C 00 00 OO0 OO0 OO0 OO OO0 OO0 00 00 00 7 & @e<eeeeenesnns
00000110hk: OO0 OO0 00 OO0 OO OO OO0 00 OO0 00 00 00 00 00 00 00 2 e e esennssannns
O00O001Z0h: OO0 OO0 OO0 OO OO0 00 OO0 OO OO0 00 00 00 00 00 00 00 7 @i e e e i meenennns
oooO00130h: OO0 OO0 OO0 OO OO0 OO OO0 OO0 OO0 OO0 OO OO0 OO0 00 00 00 7 @ e e e eeaenesnns
00000140k: OO0 OO0 00 OO0 OO OO OO0 00 OO0 00 00 00 00 00 00 00 2 e eesennssannns
o0000150h: OO0 OO0 OO0 OO OO0 00 OO0 OO OO0 20 00 00 10 00 00 00 7 @i eeei e ine venmen
0O0000160h: OO0 Q0 OO0 00 00 00 OO0 Q0 00 00 00 00 00 00 00 00 7 e eeen v annnsanns
0000017 0h: 00 OO0 OO0 OO0 OO OO0 OO0 00 2Z2E 74 65 78 74 00 00 00 2 o .oveenens text
o0000180h: 26 00 00 OO0 OO0 10 00 OO0 OO0 02 00 00 00 02 00 00 ;7 & . nieieenernns
00000190Kh: 00 Q0 OO0 00 00 00 OO0 Q0 00 00 00 00 20 00 00 60 7 v eeeenvannas
ooo001a0h: 2E 72 64 61 74 61 00 00 S92 00 00 Q0 00 20 00O QO rdata. .’

The only other differences between the 2 files are of course e_Ifanew (the offset of the PE
header), TimeDateStamp and SizeOfHeaders (which is effectively the offset of the first

section).

21

22

6. The Data Directory

To recap, DataDirectory is the final 128 bytes of OptionalHeader, which in turn is the
final member of the PE header IMAGE_NT_HEADERS.

As we have said, the DataDirectory is an array of 16 IMAGE_DATA DIRECTORY
structures, 8 bytes apiece, each relating to an important data structure in the PE file. Each
array refers to a predefined item, such as the import table. The structure has 2 members
which contain the location and size of the data structure in question:

INAGE DATA DIRECTORY STRUCT
Virtualiddress DIORD ?
i=size DWORD ?

IMAGE DATA DIRECTORY ENDS

VirtualAddress is the relative virtual address (RVA) of the data structure (see later
section).

isize contains the size in bytes of the data structure.

The 16 directories to which these structures refer are themselves defined in windows.inc:

TMAGE DIRECTORY ENTRY EXFPORT ecqu O
TMAGE DIRECTORY ENTRY IMPORT equ 1
TMAGE DIEECTORY ENTRY REZOURCE ecu 2
TMAGE DIRECTORY ENTRY EXCEPTICN ecu 3
TMAGE DIRECTORY ENTRY SECURITY equ 4
TMAGE DIRECTORY ENTRY BAZERELOC equ 5
TMAGE DIRECTORY ENTREY DEBUG equ 6
TMAGE DIRECTORY ENTRY COPYRIGHT equ 7
TMAGE DIRECTORY ENTRY GLOBALFTR equ S
TMAGE DIRECTORY ENTRY TL3 equ 9
TMAGE DIRECTORY ENTRY LOAD CONFIG ecu 10
TMAGE DIRECTORY ENTREY BOUND IMPORT ecu 11
TMAGE DIRECTORY ENTRY TAT ecqu 12
TMAGE DIRECTORY ENTREY DELALY TMPORT ecu 13
TMAGE DIRECTORY ENTRY COM DESCRIFTOR ecu 14
TMAGE WUMBEROF DIRECTORY ENTRIES equ 16

For example, in LordPE the data directory for our example executable contains only 4
members (highlighted). The 12 unused ones are shown filled with zeros:

23

Directony Information
RvA, Size Ok

EvportTable: | 00000000 | 00000000 .| L | H|

ImportTable: | 00020000] | 00001S1E| .| L| H|
Resource: 00034000] | ooo0ge0a) | L[H|

Excepion: 00000000 | 00000000 || H|
Security: EIEIEIEIEIEIEIEI| Q0000000 ﬂ
Relocation: 00031000| | ooo02e04] .. | L H]
Debug: 00000000 | 00000000 || L H]
Copyright 00000000 | 00000000 .| L | H]
Globalptr 00000000 | 00000000

|
|
I
|
|
|
ThsTable: [0o030000] [oo000at] .| L| H]
|
|
|
|
|
|

LoadCanfig: 00000000 | 00000000 [L H|
Boundimport; 00000000 | 00000000 .| L | H]
IAT: 00000000 | 00000000 H]
Delaylmport: 00000000 | 00000000 | L H|
COM: 00000000 | 00000000 .| L | H]
Reserved: 00000000 | 00000000 H

For example, in the above picture the "import table" fields contain the RVA and size of the
IMAGE_IMPORT_DESCRIPTOR array - the Import Directory. In the hexeditor, the
picture below shows the PE header with the data directory outlined in red. Each box
represents one IMAGE_DATA_DIRECTORY structure, the first DWORD being
VirtualAddress and the last being isize.

00000100k: S50 45 00 00 4C 01 08 00 19 SE 42 Z4 00 00 00 OO ; PE..L...."E*....

G The 16 Data
000001100L: OO0 OO0 Q0 00 EO OO SE S1 OB 01 02 19 00 w0 02 00 ;»&a.20..... T e
000001Z20h: OO DE QOO OO0 OO OO0 00 00 B4 AD OZ OO0 OO0 10 00 00 ; Po..... R e EHLEEEEIEEE
00000130h: 00 BO 02 OO0 OO0 OO0 40 00 00 10 00 00 00 02 00 o0 ; .%....0.........

00000140kh: O1 OO0 OO0 00 OO0 00 00 00 04 00 00 00 00 00 00 00 2 @ enenennnnnas
00000150h: OO DO 03 00 OO0 04 00 OO0 OO0 00 00 00 0z 00 00 00 ;@ B

00000160k: OO OO 10 00 OO0 40 0O QOO OO0 00 10 00 00 10 00 00 : TR I LT
00000170h: OO OO0 00 00 10 00 00 O0O0J00 00 00 00 00 00 00 O0f7 ..o eennennas
QC0o00150h: JO0 DO 02 00 1E 15 00 0000 40 03 OO0 00 SE 00 OO): .B....... LR
00000190h: |00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00§ ... eeeeennennas
Q0o001a0h: |00 10 03 00 04 25 00 0000 00 00 00 00 00 00 0o0): D T T T

000001h0h: |00 00 00 00 00 00 00 0O0J00 00 00 00 00 00 00 OO0 7 ... eennannas
QC00001c0h: |00 00 03 00 185 00 00 0000 00 00 00 00 00 00 OO0)F «@ovewernnnsnnnns
000001d0h: |00 00 00 00 00 00 00 0OJ00 00 00 00 00 00 00 D02 @ eeeeeinennas
000001e0h: |OO OO0 00 00 00 00 00 0O0fJ00 00 00 00 00 00 00 00§ ..o eeinennas
000001£0h: OO OO0 00 00 OO0 00 00 DO)43 4F 44 45 00 00 00 00 @ CODE....
00000200h: 85 9E 02 00 00 10 00 00 OO0 AD OZ 00 00 04 00 00 7 "Z..ueuen vuenns

The Import Directory is highlighted in pink. The first 4 bytes are the RVA 2D000h (NB
reverse order). The size of the Import Directory is 181Eh bytes. As we said above the
position of these data directories from the beginning of the PE header is always the same
i.e. the DWORD 80 bytes from the beginning of the PE header is always the RVA to the
Import Directory.

To locate a particular directory, you determine the relative address from the data
directory. Then use the virtual address to determine which section the directory is in. Once
you determine which section contains the directory, the section header for that section is
then used to find the exact offset.

24

7.The Section Table

This follows immediately after the PE header. It is an array of
IMAGE_SECTION_HEADER structures, each containing the information about one
section in the PE file such as its attribute and virtual offset. Remember the number of
sections is the second member of FileHeader (6 bytes from the start of the PE header). If
there are 8 sections in the PE file, there will be 8 duplicates of this structure in the table.
Each header structure is 40 bytes apiece and there is no "padding” between them. The
structure is defined in windows.inc thus:

TMAGE SECTIOHN HEADER STRUCT
MName1l BEYTE IMAGE SIZEOF_ 3ZHORT NAME dup(?)
union HMisc

Phy=sicalliddress DWORD ?
VirtualS3ize DWORD ?
ends
Virtuallddress DIIORD ?
3izeOfRawData DWORD ?
FPointerToRawlhata DIIORD ?
FPointerToRelaocations DWORD ?
PointerToLinenuwbhers DWORD ?
NumberOfRelocations WORD ?
NumberOfLinenumbers WORD ?
Characteristics DIIORD ?
INAGE JECTICON HEADEFR END3
IMAGE SIZEOF SHORT MNAME equ 8
Again, not all members are useful. I'll describe only the ones that are really important.
Namel -- (NB this field is 8 bytes) The name is just a label and can even be left blank.

Note this is not an ASCII string so it doesn't need a terminating zero.

VirtualSize -- (DWORD union) The actual size of the section's data in bytes. This may be
less than the size of the section on disk (Size OfRawData) and will be what the loader
allocates in memory for this section.

VirtualAddress -- The RVA of the section. The PE loader examines and uses the value in
this field when it's mapping the section into memory. Thus if the value in this field is
1000h and the PE file is loaded at 400000h, the section will be loaded at 401000h.

SizeOfRawData -- The size of the section's data in the file on disk, rounded up to the
next multiple of file alignment by the compiler.

PointerToRawData -- (Raw Offset) - incredibly useful because it is the offset from the
file's beginning to the section's data. If it is O, the section's data are not contained in the
file and will be arbitrary at load time. The PE loader uses the value in this field to find
where the data in the section is in the file.

Characteristics -- Contains flags such as whether this section contains executable code,

25

initialized data, uninitialized data, can it be written to or read from (see appendix).

NOTE: When searching for a specific section, it is possible to bypass the PE header entirely
and start parsing the section headers by searching for the section name in the ASCII
window of your hexditor.

Back to our example in the hexeditor, our file has 8 sections as we saw in the PE header

section.

Qoo001f0h:
00000200h:
000002 10h:
Q0000Z220k:
0000023 0h:
000002 40h:
Q0000Z50h:
000002 60h:
0000027 0h:
QO000EE0h:
00000220h:
QO0000Z2&0h:
o00002kbh0h:
000002 c0h:
QO0000Z2d0h:
oo00002elh:
000002 £0h:
Q00003 00h:
000003 10h:
00000320h:
0000033 0h:
000003 40h:
Q00003 50k:
000003 60h:
000003 70h:
Q0000380h:

After the section headers we find the
starts at an offset that

oo
f=3=]
oo
44
oo
oo
L=
oo
ZE
oo
oo
asg
oo
ZE
aa
oo
04
aa
ZE
oo
oo
oo
aa
oo
oo
aa

oo
SE
oo
41
()=
oo
aa
oo
7=
1h
oo
aa
oo
Ta
oz
oo
ZB
aa
Ta
SE
oo
oo
aa
oo
oo
aa

oo
oz
a0
54
aa
aa
aa
oo
a4
oo
a0
aa
a0
a4
aa
a0
aa
aa
T3
aa
a0
aa
aa
aa
aa
oa

(u]u}
oo
oo oo
41 o0 D4
oo 40 o0 oo Coj4:2
oo o0 Co 02 00 oo
o0 OO0 o0 o0 00 oo
61 74 61 00 00 1E
oo 40 CO|ZE
oo oo oo oo
oo oo oo oo
61 74 oo 18
oof oo ooy oo
oo 40 S0 ZE
oo oo oo oo
oo oo oo oo
T2 63 00 00 00 a0
DDlDD Fd4 02 DDlDD
oo 40 0o oo
oo oo Do o3
oo oo oo oo
oo oo oo oo
oo oo oo oo
oo oo oo oo

43
oo

oo
oo
oo
oo
oo

4F
A0
a0
o&
a0
53
oo
a0
15
oo
T4
oo
a0
oo
oo
Ta
ac
oo
gE
a0

oo
oo
oo
oo
oo

44
0z
a0
oo
a0
53
oo
a0
oo
oo
ac
oo
a0
oo
oo
a5
oo
oo
oo
a0

oo
oo
oo
oo
oo

45 00 00 g0 oo

oojod o4 00 odjf ;

o0 20 00 00 a0
oo 00 EO Oz 00
o0 oo oo 00 oo
oo oo oo 00 oo

ooy oo AC 02 0Odf -

o0 oo oo 00 <o
oo oo Do 02 oo
Q0 00 00 00 00
T3 00 00 00 0o

oojoo C& Oz O0f~F

o0 oo oo o0 <o
oo oo oo 03 oo
o0 00 0o aod oad
aC aF 63 00 00

oo
oo
a0
oo

40
oo
a0
oo

oo
40
a0
oo

oo
03
a0
oo

a0
oo

oo
oo
oo
oo

40
oo
oo
oo

oo
oo
oo
oo

oo a

0
oo
oo

oo
oo

oojod S8 02 00)-;

..... CODE
- e
DATA)...O s
..... Hpmmm e
I 411 R
x J‘-L =Thia
TR i
idata)...... .
----- _lunuu_------
SN C s 7 o)
..... - Y
e i
rdatal .. e e
S Eloenyeotentyensss
[, . Bdrelocs
o e
............ [..P
rarcl Z [
T o A e
st s Bieteintntoinieg
..... idpcncncnzncns anene
 Poihte ToRawData

sections themselves. In the file on disk, each section
is some multiple of the FileAlignment value found in

OptionalHeader. Between each section’s data there will be 00 byte padding.

When loaded into RAM, the sections always start on a page boundary so that the first byte
of each section corresponds to a memory page. On x86 CPUs pages are 4kB aligned, whilst
on lA-64, they are 8kB aligned. This alignment value is stored in SectionAlignment also in

OptionalHeader.

For example, if the optional header ends at file offset 981 and FileAlignment is 512, the
first section will start at byte 1024. Note that you can find the sections via the
PointerToRawData or the VirtualAddress, so there is no need to bother with alignments.

In the picture above, the Import Data Section (.idata) will start at offset 0002AC00h
(highlighted pink, NB reverse byte order) from the start of the file. Its size, given by the
DWORD before, will be 1A00h bytes.

26

8. The PE File Sections

The sections contain the main content of the file, including code, data, resources, and
other executable information. Each section has a header and a body (the raw data). The
section headers are contained in the Section Table but section bodies lack a rigid file
structure. They can be organized almost any way a linker wishes to organize them, as long
as the header is filled with enough information to be able to decipher the data.

An application for Windows NT typically has the nine predefined sections named .text,
.bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need
all of these sections, while others may define still more sections to suit their specific
needs.

Executable Code

In Windows NT all code segments reside in a single section called .text or CODE. Since
Windows NT uses a page-based virtual memory management system, having one large
code section is easier to manage for both the operating system and the application
developer. This section also contains the entry point mentioned earlier and the jump thunk
table (where present) which points to the IAT (see import theory).

Data

The .bss section represents uninitialized data for the application, including all variables
declared as static within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants, and debug
directory information.

All other variables (except automatic variables, which appear on the stack) are stored in
the .data section. These are application or module global variables.

Resources

The .rsrc section contains resource information for a module. The first 16 bytes comprises
a header like most other sections, but this section's data is further structured into a
resource tree which is best viewed using a resource editor. A good one, ResHacker, is free
and allows editing, adding, deleting, replacing and copying resources:

27

E4 Resource Hacker - C:¥Program Files\Hex Tools\BASECALC. EXE
File Edit Wiew Action Help

+- [Cursar # #

¥ Dh;.:.n 16 ®x 16 (16 colors) - Ordinal name: 1

¥ DStringTahle 32 ¥ 32 (16 colors) - Ordinal name: 2 =2

- DRCData 32 ® 32 (2 colorz) - Ordinal name: 3 ooos
IEXCRD

+-[7 Cursor Group CERL

—-£3 lcon Group ELLL]

=45 MAINICOMN
+-[_7] Wersion Info w w

Line: 1 43

£4 Resource Hacker - C:\Program Files\Hex Tools\BASECALC. EXE
File Edit

+-[2 Cursor

Wiews Bfudlulyt

Save Resource as a binary file ...

+-[27] lcon Save Resource as a *.res file ... - Ordinal name: 1

¥ String Ta, Save [Icon Group : MAINICON : 0] ... - Ordinal name: z |[EEEI
Ordinal name: 3 L)

+-(RCData Save [Icon Group] resources .. ELLL

#-(0 Cursor Gl save ol Resources .. EEEE

=9 leon Grol ELLE

—J42 MAINI Replace Icon ...
@ a Replace Cursor ...,

Replace Bitrnap ...

+ Yersion [l
G Replace other Resource ...

Update all Resources ...

add a new Resource ...

Rename Resource [Icon Group @ MAINICOMN ; 0]
Delete Resource [Icon Group : MAINICOMN ; 0]

Line: 43

This is a powerful tool for cracking purposes as it will quickly display dialog boxes including
those concerning incorrect registration details or nag screens. A shareware app can often
be cracked just by deleting the nagscreen dialog resource in ResHacker.

Export data

The .edata section contains the Export Directory for an application or DLL. When present,
this section contains information about the names and addresses of exported functions.
We will discuss these in greater depth later.

Import data

The .idata section contains various information about imported functions including the
Import Directory and Import Address Table. We will discuss these in greater depth later.

Debug information

Debug information is initially placed in the .debug section. The PE file format also
supports separate debug files (normally identified with a .DBG extension) as a means of
collecting debug information in a central location. The debug section contains the debug

28

information, but the debug directories live in the .rdata section mentioned earlier. Each of
those directories references debug information in the .debug section.

Thread Local Storage

Windows supports multiple threads of execution per process. Each thread has its own
private storage, Thread Local Storage or TLS, to keep data specific to that thread, such as
pointers to data structures and resources that the thead is using. The linker can create a
.tls section in a PE file that defines the layout for the TLS needed by routines in the
executable and any DLLs to which it directly refers. Each time the process creates a
thread, the new thread gets its own TLS, created using the .tls section as a template.

Base Relocations

When the linker creates an EXE file, it makes an assumption about where the file will be
mapped into memory. Based on this, the linker puts the real addresses of code and data
items into the executable file. If for whatever reason the executable ends up being loaded
somewhere else in the virtual address space, the addresses the linker plugged into the
image are wrong. The information stored in the .reloc section allows the PE loader to fix
these addresses in the loaded image so that they're correct again. On the other hand, if
the loader was able to load the file at the base address assumed by the linker, the .reloc
section data isn't needed and is ignored.

The entries in the .reloc section are called base relocations since their use depends on the
base address of the loaded image. Base relocations are simply a list of locations in the
image that need a value added to them. The format of the base relocation data is
somewhat quirky. The base relocation entries are packaged in a series of variable length
chunks. Each chunk describes the relocations for one 4KB page in the image.

For example, if an executable file is linked assuming a base address of 0x10000. At offset
0x2134 within the image is a pointer containing the address of a string. The string starts
at physical address 0x14002, so the pointer contains the value 0x14002. You then load the
file, but the loader decides that it needs to map the image starting at physical address
0x60000. The difference between the linker-assumed base load address and the actual
load address is called the delta. In this case, the delta is 0x50000. Since the entire image
is Ox50000 bytes higher in memory, so is the string (now at address 0x64002). The
pointer to the string is now incorrect. The executable file contains a base relocation for the
memory location where the pointer to the string resides. To resolve a base relocation, the
loader adds the delta value to the original value at the base relocation address. In this
case, the loader would add 0x50000 to the original pointer value (0x14002), and store the
result (0x64002) back into the pointer's memory. Since the string really is at 0x64002,
everything is fine with the world.

29

30

9. The Export Section

This section is particularly relevant to DLLs. The following passage from Win32
Programmer's Reference explains why:

In Microsoftd Windows®, dynamic-link libraries (DLL) are modules that contain functions and data. A DLL is
loaded at runtime by its calling modules {(EXE or DLL). YWhen a DLL is loaded, it is mapped into the address
space of the calling process.

DLLs can define twa kinds of functions: exported and internal. The exported functions can be called by other
modules, Internal functions can only be called from within the DLL where they are defined. Although DLLs
can export data, its data is usually only used by its functions.

DLL= provide a way to modularize applications so that functionality can be updated and reused mare easilly.
They also help reduce memaory overhead when several applications use the same functionality at the same
tirme, because although each application gets its own copy of the data, they can share the code.

The Microsofte Win3d2® application programming interface (AP is implemented as a set of dynamic-link
libraries, so any process using the YWind2 APl uses dynamic linking.

Functions can be exported by a DLL in two ways; "by name" or "by ordinal only". An
ordinal is a 16-bit (WORD-sized) number that uniquely identifies a function in a particular
DLL. This number is unique only within the DLL it refers to. We will discuss exporting by
ordinal only later.

If a function is exported by name, when other DLLs or executables want to call the
function, they use either its name or its ordinal in GetProcAddress which returns the
address of the function in its DLL. The Win32 Programmer's Reference explains how
GetProcAddress works (although in reality there is more to it, not documented by M$,
more on this later). Note the sections | have highlighted:

31

« Win32 Programmer’s Reference

File Edit Bookmark ©Options Help

Qontents| jndex‘ ‘ A ‘ 22 ‘

GetProcAddress [Quick Info| | Overview || Group |

The GetProcAddress function returns the address of the specified exported dynamic-link library (DLL)
function.

FARPROC GetProcAddress(

HMODULE Aidociuie, / handle to DLL module
LPCSTR lpFrocharme # name of function
);

Parameters
Aol

[dentifies the DLL module that contains the function. The LoadLibrany or GetModuleHandle function
returns this handle.

lpPrachame

Faints to a null-terminated string containing the function name, or specifies the function's ordinal walue.
If this parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero.

Return Values
If the function succeeds, the return value is the address of the DLL's exported function.

If the function fails, the return walue is MULL. To get extended error information, call GetLastError.

Remarks
|The GetProcAddress function is used to retrieve addresses of exported functions in DLLs.

The spelling and case of the function name pointed to by JoFProcMame must be identical to that in the
EXPORTS staterment of the source DLL's module-definition (. DEF) file.

The lpProchame parameter can identify the OLL function by specifying an ardinal value associated with the
function in the EXPORTS staternent. GetProcAddress verifies that the specified ordinal is in the range 1
through the highest ardinal value exported in the .DEF file. The function then uses the ordinal as an index to

read the function's address from a function table |If the .DEF file does not number the functions
consecutively from 1 to W (where W is the number of exported functions), an error can occur where
GetProcAddress returns an invalid, non-MULL address, even though there is no function with the specified
ordinal.

In cases where the function may not exist, the function should be specified by name rather than by ardinal
value.

F

GetProcAddress can do this because the names and addresses of exported functions are
stored in a well defined structure in the Export Directory. We can find the Export Directory
because we know it is the first element in the data directory and the RVA to it is contained

at offset 78h from the start of the PE header (see appendix).

The export structure is called IMAGE_EXPORT_DIRECTORY. There are 11 members in

the structure but some are not important:

32

IMAGE EXPORT DIRECTORY STRUCT

Characteristics DToORD ?
TimeDateItamp DWORD ?
MajorvVersion WORD ?
HinorVWer=sion WoORD ?
nilame DIoORD ?
nEase DWORD ?
NuttherofFunctions DIORD ?
Nurmber OfMNamne s DWORD ?
AddressOfFunctions DWORD ?
AddressOfNames DWORD ?
Address0fNameOrdinals DWORD ?

TMAGE EXPORT DIRECTORY ENDS

nName -- The internal name of the module. This field is necessary because the name of
the file can be changed by the user. If that happens, the PE loader will use this internal
name.

nBase -- Starting ordinal number (needed to get the indexes into the address-of-
function array - see below).

NumberOfFunctions -- Total number of functions (also referred to as symbols) that
are exported by this module.

NumberOfNames -- Number of symbols that are exported by name. This value is not
the number of all functions/symbols in the module. For that number, you need to check
NumberOfFunctions. It can be 0. In that case, the module may export by ordinal only. If
there is no function/symbol to be exported in the first case, the RVA of the export table in
the data directory will be O.

AddressOfFunctions -- An RVA that points to an array of pointers to (RVAs of) the
functions in the module - the Export Address Table (EAT). To put it another way, the RVAs
to all functions in the module are kept in an array and this field points to the head of that
array.

AddressOfNames -- An RVA that points to an array of RVAs of the names of functions in
the module - the Export Name Table (ENT).

AddressOfNameOrdinals -- An RVA that points to a 16-bit array that contains the
ordinals of the named functions - the Export Ordinal Table (EOT).

33

IMAGE_EXFPORT
_DIRCTORY

——>>"F0O0.DLL"

Export Address Table [RYWAs)

B cocoez | onaoorss | oxsorass.

0x400520

Export Name
Table

Export Ordinal
Table

Thus the IMAGE_EXPORT_DIRECTORY structures point to three arrays and a table of ASCII
strings. The important array is the EAT, which is an array of function pointers that contain
the addresses of exported functions. The other 2 arrays (EAT & EOT) run parallel in
ascending order based on the name of the function so that a binary search for a function's
name can be performed and will result in its ordinal being found in the other array. The
ordinal is simply an index into the EAT for that function.

AddressOfNames AddressOfNameOrdinals

Index of Mame M l

Since the EOT array exists as the linkage between the names and the addresses, it cannot
contain more elements than the ENT array, i.e. each name can have one and only one
associated address. The reverse is not true: an address may have several names
associated with it. If there are functions with "aliases™ that refer to the same address then
the ENT will have more elements than the EOT.

34

For example, if a DLL exports 40 functions, it must have 40 members in the array pointed
to by AddressOfFunctions (the EAT) and the NumberOfFunctions field must contain the
value 40.

To find the address of a function from its name, the OS first obtains the values of
NumberOfFunctions and NumberOfNames in the Export Directory. Next it walks the arrays
pointed to by AddressOfNames (the ENT) and AddressOfNameOrdinals (the EOT) in
parallel, searching for the function name. If the name is found in the ENT, the value in the
associated element in the EOT is extracted and used as the index into the EAT.

For example, in our 40-function-DLL we are looking for functionX. If we find the name
functionX (indirectly via another pointer) in the 39th element in the ENT, we look in the
39th element of the EOT and see the value 5. We then look at the 5th element of the EAT
to find the RVA of functionX.

If you already have the ordinal of a function, you can find its address by going directly to
the EAT. Although obtaining the address of a function from an ordinal is much easier and
faster than using the name of the function, the disadvantage is the difficulty in the
maintaining the module. If the DLL is upgraded/updated and the ordinals of the functions
are altered, other programs that depend on the DLL will break.

Exporting by Ordinal Only

NumberOfFunctions must be at least equal to NumberOfNames. However sometimes
NumberOfNames is less than NumberOfFunctions. When a function is exported by ordinal
only it doesn't have entries in both ENT and EOT arrays - it doesn't have a name. The
functions that don't have names are exported by ordinal only.

For example, if there are 70 functions but only 40 entries in the ENT, it means there are
30 functions in the module that are exported by ordinal only. Now how can we find out
which functions these are? It's not easy. You must find out by exclusion, i.e. the entries in
the EAT that are not referenced by the EOT contain the RVAs of functions that are
exported by ordinal only.

The programmer can specify the starting ordinal number in a .def file. For example, the
tables in the picture above could start at 200. In order to prevent the need for 200 empty
entries first in the array, the nBase member holds the starting value and the loader
subtracts the ordinal numbers from it to obtain the true index into the EAT.

Export Forwarding

Sometimes functions which appear to exported from a particular DLL actually reside in a
completely different DLL. This is called export forwarding For example, in WinNT, Win2k
and XP, the kernel32.dll function HeapAlloc is forwarded to the RtlAllocHeap function
exported by ntdll.dll. NTDLL.DLL also contains the native APl set which is the direct
interface with the windows kernel. Forwarding is performed at link time by a special
instruction in the .DEF file.

Forwarding is one technique Microsoft employs to expose a common Win32 APl set and to
hide the significant low-level differences between the Windows NT and Windows 9x
internal API sets. Applications are not supposed to call functions in the native API set since
this would break compatibility between win9x and 2k/XP. This probably explains why
packed executables which have been unpacked and had their imports reconstructed

35

manually on one OS may not run on the other OS because the API forwarding system or
some other detail has been altered.

When a symbol (function) is forwarded its RVA clearly can't be a code or data address in
the current module. Instead the EAT table contains a pointer to an ASCII string of the DLL
and function name to which it is forwarded. In the prior example it would be
NTDLL.RtlAllocHeap

If therefore the EAT entry for a function points to an address inside the Exports Section (ie
the ASCII string) rather than outside into another DLL, you know that function is
forwarded.

36

10. The Import Section

The import section (usually .idata) contains information about all the functions imported
by the executable from DLLs (see last section for explanation). This information is stored
in several data structures. The most important of these are the Import Directory and the
Import Address Table which we will discuss next. In some executables there may also be
Bound_Import and Delay Import directories. The Delay Import directory is not so
important to us but we will discuss the Bound_Import directory later.

The Windows loader is responsible for loading all of the DLLs that the application uses and
mapping them into the process address space. It has to find the addresses of all the
imported functions in their various DLLs and make them available for the executable being
loaded.

The addresses of functions inside a DLL are not static but change when updated versions
of the DLL are released, so applications cannot be built using hardcoded function
addresses. Because of this a mechanism had to be developed that allowed for these
changes without needing to make numerous alterations to an executable's code at
runtime. This was accomplished through the use of an Import Address Table (IAT). This is
a table of pointers to the function addresses which is filled in by the windows loader as the
DLLs are loaded.

By using a pointer table, the loader does not need to change the addresses of imported
functions everywhere in the code they are called. All it has to do is add the correct address
to a single place in the import table and its work is done.

The Import Directory

The Import Directory is actually an array of IMAGE_IMPORT_DESCRIPTOR structures.
Each structure is 20 bytes and contains information about a DLL which our PE file imports
functions from. For example, if our PE file imports functions from 10 different DLLs, there
will be 10 IMAGE_IMPORT_DESCRIPTOR structures in this array. There's no field
indicating the number of structures in this array. Instead, the final structure has fields
filled with zeros.

As with Export Directory, you can find where the Import Directory is by looking at the Data
Directory (80 bytes from beginning of PE header). The first and last members are most
important:

37

TMAGE IMFPORT DE3CRIPTOR STRUCT

union
Characteristics DWORD ?
OriginalFirstThunk DWORD ?
ends
Timelhate3tamp DWoORD ?
ForwarderChain DWORD ?
Namel DIWORD ?
FirstThunk DIWORD ?

IMAGE TMPORT DEICRIPTOR EMNDS

The first member OriginalFirstThunk, which is a DWORD union, may at one time have
been a set of flags. However, Microsoft changed its meaning and never bothered to update
WINNT.H. This field really contains the RVA of an array of IMAGE_THUNK_DATA
structures.

[By the way, a union is just a redefinition of the same area of memory. The union above
doesn't contain 2 DWORDS but only one which could contain either the OriginalFirstThunk
data or the Characteristics data.]

The TimeDateStamp member is set to zero unless the executable is bound when it
contains -1 (see below). The ForwarderChain member was used for old-style binding and
will not be considered here.

Namel contains the a pointer (RVA) to the ASCII name of the DLL.

The last member FirstThunk, also contains the RVA of an array of DWORD-sized
IMAGE_THUNK_DATA structures - a duplicate of the first array. If the function
described is a bound import (see below) then FirstThunk contains the actual address of the
function instead of an RVA to an IMAGE_THUNK_DATA. These structures are defined thus:

IMAGE THUNE DATAZZ 3ITRUCT

union ul
Forwarder3tring DWORD ?
Function DWORD ?
Ordinal DWORD ?
Lddress0fDhata DWORD ?
ends

TMAGE THUNE DATA3Z END3I

Each IMAGE_THUNK_ DATA is a DWORD union that effectively only has one of 2 values.
In the file on disk it either contains the ordinal of the imported function (in which case it
will begin with an 8 - see export by ordinal only below) or an RVA to an
IMAGE__IMPORT_BY_NAME structure. Once loaded the ones pointed at by FirstThunk
are overwritten with the addresses of imported functions - this becomes the Import
Address Table.

Each IMAGE_IMPORT_BY_NAME structure is defined as follows:

TMAGE THPORT BY NAME 3TRUCT
Hint WORD ?
MNatne1 BYTE ?

TMAGE THMPORT BY NAME END3

38

Hint -- contains the index into the Export Address Table of the DLL the function resides
in. This field is for use by the PE loader so it can look up the function in the DLL's Export
Address Table quickly. The name at that index is tried, and if it doesn't match then a
binary search is done to find the name. As such this value is not essential and some linkers
set this field to O.

Namel -- contains the name of the imported function. The name is a null-terminated
ASCII string. Note that Namel's size is defined as a byte but it's really a variable-sized
field. It's just that there is no way to represent a variable-sized field in a structure. The
structure is provided so that you can refer to it with descriptive names.

The most important parts are the imported DLL names and the arrays of
IMAGE_THUNK_DATA structures. Each IMAGE_THUNK_ DATA structure corresponds to one
imported function from the DLL. The arrays pointed to by OriginalFirstThunk and
FirstThunk run parallel and are terminated by a null DWORD. There are separate pairs of
arrays of IMAGE_THUNK_DATA structures for each imported DLL.

Or to put it another way, there are several IMAGE_IMPORT_BY_NAME structures. You
create two arrays, then fill them with the RVAs of those IMAGE_IMPORT_BY_ NAME
structures, so both arrays contain exactly the same values (i.e. exact duplicate). Now you
assign the RVA of the first array to OriginalFirstThunk and the RVA of the second array to
FirstThunk.

The number of elements in the OriginalFirstThunk and FirstThunk arrays depends on the
number of functions imported from the DLL. For example, if the PE file imports 10
functions from user32.dll, Namel in the IMAGE_IMPORT_DESCRIPTOR structure will
contain the RVA of the string "user32.dllI" and there will be 10 IMAGE_THUNK_ DATAS in
each array.

The 2 parallel arrays have been called by several different names but the commonest are
Import Address Table (for the one pointed at by FirstThunk) and Import Name Table
or Import Lookup Table (for the one pointed at by OriginalFirstThunk).

Why are there two parallel arrays of pointers to the IMAGE_IMPORT_BY_NAME structures?
The Import Name Tables are left alone and never modified. The Import Address Tables are
overwritten with the actual function addresses by the loader. The loader iterates through
each pointer in the arrays and finds the address of the function that each structure refers
to. The loader then overwrites the pointer to IMAGE_IMPORT_BY_NAME with the function's
address. The arrays of RVAs in the Import Name Tables remain unchanged so that if the
need arises to find the names of imported functions, the PE loader can still find them.

Although the IAT is pointed to by entry number 12 in the Data Directory, some linkers
don't set this directory entry and the app will run nevertheless. The loader only uses this
to temporarily mark the IATs as read-write during import resolution and can resolve the
imports without it.)

This is how the windows loader is able to overwrite the IAT when it resides in a read-only
section. At load time the system temporarily sets the attributes of the pages containing
the imports data to read/write. Once the import table is initialized the pages are set back
to their original protected attributes.

39

Overwritten by PE loader

+ Image_ +

IMAGE_IMPORT_BY_NAME Image_ Adress of
Thunk_ Thurik_ Get Mess-
[rata % 44 % [rata -age
ITr:Iag E_ GetMeszage Image_ Adress of
unk_ Thunk_ Loadlcan
REAraREN % 2 % Data
I
IMAGE_IMPORT_DESCRIPTOR, TTU EH'E— Loadlzon IT r: ag:_ ?i.r::iit f
= unk_ -
OriginalFirstThunk ~ —J Data > 19 L pata Message
e TranslateMessage Image_ Adress of
TimeDateSt Thunk_ ; Thunk_ I='wimdio-
e R Data 35 % D ata WS
IMFORT IMFORT
ForwarderChan MAME TABLE ISWindows ADDRESS
TAELE
Hame1 "USER32.0LL™
FirstThunk
Additionazl

MAGE_IMPORT_DESCRIPTORS
Tor other DLLE, ag necessary

Calls to imported functions take place via a function pointer in the IAT and can take 2
forms, one more efficient than the other. For example imagine the address 00405030
refers to one of the entries in the FirstThunk array that's overwritten by the loader with
the address of GetMessage in USER32.DLL.

The efficient way to call GetMessage looks like this:

0040100C CALL DWORD PTR [00405030]
The inefficient way looks like this:
0040100C CALL [00402200]

00402200 JMP DWORD PTR [00405030]

i.e. the second method achieves the same but uses 5 additional bytes of code and takes
longer to execute because of the extra jump.

Why are calls to imported functions implemented in this way? The compiler can't
distinguish between calls to ordinary functions within the same module and imported
functions and emits the same output for both: CALL [XXXXXXXX]

where XXXXXXXX has to be an actual code address (not a pointer) to be filled in by the
linker later. The linker does not know the address of the imported function and so has to
supply a substitute chunk of code - the JMP stub seen above.

The optimised form is obtained by using the _declspec(dllimport) modifier to tell the
compiler that the function resides in a DLL. It will then output CALL DWORD PTR
[XXXXXXXX].

If _declspec(dllimport) has not been used when compiling an executable there will be a

40

whole collection of jump stubs for imported functions located together somewhere in the
code. This has been known by various name such as the "transfer area”, "trampoline™ or
"jump thunk table".

Functions Exported by Ordinal Only

As we discussed in the export section, some functions are exported by ordinal only. In this
case, there will be no IMAGE IMPORT_BY_NAME structure for that function in the caller's
module. Instead, the IMAGE_THUNK_DATA for that function contains the ordinal of the
function.

Before the executable is loaded, you can tell if an IMAGE_THUNK_DATA structure contains
an ordinal or an RVA by looking at the most significant bit (MSB) or high bit. If set then
the lower 31 bits are treated as an ordinal value. If clear, the value is an RVA to an
IMAGE_IMPORT_BY_NAME. Microsoft provides a handy constant for testing the MSB of a
dword, IMAGE_ORDINAL_FLAG32. It has the value of 80000000h.

For example, if a function is exported by ordinal only and its ordinal is 1234h, the
IMAGE_THUNK_DATA for that function will be 80001234h.

Bound Imports

When the loader loads a PE file into memory, it examines the import table and loads the
required DLLs into the process address space. Then it walks the array pointed at by
FirstThunk and replaces the IMAGE_THUNK_DATAs with the real addresses of the import
functions. This step takes time. If somehow the programmer can predict the addresses of
the functions correctly, the PE loader doesn't have to fix the IMAGE_THUNK_ DATAs each
time the PE file is run as the correct address is already there. Binding is the product of that
idea.

There is a utility named bind.exe that comes with Microsoft compilers that examines the
IAT (FirstThunk array) of a PE file and replaces the IMAGE_THUNK_DATA dwords with the
addresses of the import functions. When the file is loaded, the PE loader must check if the
addresses are valid. If the DLL versions do not match the ones in the PE files or if the DLLs
need to be relocated, the PE loader knows that the bound addresses are stale and it walks
the Import Name Table (OriginalFirstThunk array) to calculate the new addresses.

Therefore although the INT is not necessary for an executable to load, if not present the
executable cannot be bound. For a long time Borland's linker TLINK did not create an INT
therefore files created by Borland could not be bound. We will see another consequence of
the missing INT in the next section.

The Bound_Import Directory

The information the loader uses to determine if bound addresses are valid is kept in a
IMAGE_BOUND_IMPORT_DESCRIPTOR structure. A bound executable contains a list of
these structures, one for each imported DLL that has been bound:

TMAGE BOUND IMPORT DEICRIFTOR STRUCT

TimeDbateItamp DWORD ?
OffzetModul elame WORD ?
NunberOfModuleForwarderRefs WORD ?

IMAGE EBOUND TMPORT DEICREIPTOR ENDS

41

The TimeDateStamp member must match the TimeDateStamp of the exporting DLL's
FileHeader; if it doesn't match, the loader assumes that the binary is bound to a "wrong"
DLL and will re-patch the import list. This can happen if the version of the exporting DLL
doesn't match or if it has had to be relocated in memory.

The OffsetModuleName member contains the offset (not RVA) from the first
IMAGE_BOUND_ IMPORT_DESCRIPTOR to the name of the DLL in null-terminated ASCII.

The NumberOfModuleForwarderRefs member contains the number of
IMAGE_BOUND_FORWARDER_REF structures that immediately follow this structure. These
are defined thus:

TMAGE EOUND FORWARDER EEF 3ITRUCT

Timebate3tamp DWORD 2
OffzsetModulelsme WORD ?
Feserwved WORD 2

IMAGE BOUND FORWARDER REF ENDS

As you can see they are identical to the previous structure apart from the final member
which is reserved in any case. The reason there are 2 similar structures like this is that
when binding against a function which is forwarded to another DLL, the validity of that
forwarded DLL has to be checked at load time too. The IMAGE_BOUND_FORWARDER_REF
contains the details of the forwarded DLLs.

For example the function HeapAlloc in kernel32.dll is forwarded to RtlAllocateHeap in
ntdll.dll. If we created an app which imports HeapAlloc and used bind.exe on the app,
there would be an IMAGE_BOUND_IMPORT_DESCRIPTOR for kernel32.dll followed by an
IMAGE_BOUND_FORWARDER_REF for ntdll.dll.

NOTE: the names of the functions themselves are not included in these structures as the
loader knows which functions are bound from the IMAGE_IMPORT_DESCRIPTOR (see
above). There was on older style binding mechanism which differs slightly from this but
has been phased out so | have omitted details here.

42

11. The Loader

This section is not essential but is for those who wish to dig a bit deeper into the workings
of the OS. It shows how relevant the material in the last 2 sections is. First a brief
overview of the stages involved in the loading process:

1. Read in the first page of the file with the DOS header, PE header, and section headers.
2. Determine whether the target area of the address space is available, if not allocate
another area.

3. Using info in the section headers, map sections of the file to the appropriate places in
the allocated address space.

4. If the file is not loaded at its target address (ImageBase), apply relocation fix-ups.

5. Go through list of DLLs in the imports section and load any that aren't already loaded
(recursive).

6. Resolve all the imported symbols in the imports section.

7. Create the initial stack and heap using values from the PE header.

8. Create the initial thread and start the process.

What the loader does

When an executable is run, the windows loader creates a virtual address space for the
process and maps the executable module from disk into the process' address space. It
tries to load the image at the preferred base address but relocates it if that address is
already occupied. The loader goes through the section table and maps each section at the
address calculated by adding the RVA of the section to the base address. The page
attributes are set according to the section’s characteristic requirements. After mapping the
sections in memory, the loader performs base relocations if the load address is not equal
to the preferred base address in ImageBase.

The import table is then checked and any required DLLs are mapped into the process
address space. After all of the DLL modules have been located and mapped in, the loader
examines each DLL's export section and the IAT is fixed to point to the actual imported
function address. If the symbol does not exist (which is very rare), the loader displays an
error. Once all required modules have been loaded execution passes to the app's entry
point.

The area of particular interest in RCE is that of loading the DLLs and resolving imports.
This process is complicated and is accomplished by various internal (forwarded) functions
and routines residing in ntdll.dll which are not documented by Micro$oft. As we said
previously function forwarding is a way for M$ to expose a common Win32 APl set and
hide low level functions which may differ in different versions of the OS. Many familiar
kernel32 functions such as GetProcAddress are simply thin wrappers around ntdll.dll
exports such as LdrGetProcAddress which do the real work.

In order to see these in action you will need to install windbg and the windows symbol
package (available free in Debugging Tools For Windows from M$) or another kernel-mode
debugger like Softlce. You can only view these functions in Olly if you configure Olly to use

43

the M$ symbolserver (search ARTeam forum for notes on this by Shub), otherwise all you
will see is pointers and memory addresses without function names. However Olly is a user-
mode debugger and will only show you what's happening when your app has been loaded
and will not allow you to see the loading process itself. Although the functionality of
windbg is poor compared to Olly it does integrate with the OS well and will show the
loading process:

&] “C:¥Program Files\Hex ToolsA\BASECALC. EXE" - WinDbg:6.4.0007.0
File Edt Wiew Debug MWindow Help

w| ||

| -il£|ﬂ|---| W}I{} |{“I*{}|J HH@I@I@IDIEIWW [18 Aal J

Frewiousz |

Offsat: |

To91lc?EY B894G5e0 nov [ebp-0x20].2ax |
7=91c75a 8b35b0c1977c nov esi, [ntdll!IdrpDl1Hotificationlist (7c97c1b0)] Reg Walue
7c91c760 89754 e [ebp—0=zlc]. e=1 g= 1]
7c91c?ed 81fseb0clB?7c cmp esi, 0x7c97c1b0 f= 3b
Foc9lc?eY 0£3561090200 jne ntdll|LdrpSenlelLDadedNDt1f1cat10ns+0338 [7c93d0d0 8 e= 23
7c91c76f eb8eZeffff call ntdll!_SEH epilog (7c90es02) d= 217
7c91c?74 20800 ret 0=8 edi 0
Toc9lc??T? 80 nop :
70910778 EfEf 277 e ész”
7c91c77a ff££ Y o= 1
7c91c?7c ebdl Jmp ntdll ! LdrpSendD]l1loadedlotifications+0=x21 (7c91c74e) 1
7c91c?7e 93 =chg cax.ebx ===
7091077 Tofe il ntdll! string'+0x6b (7c91c77f) S 242010
7c91c781 409372909090 rcl byte ptr [ebz+0x9090907c].1 ebp l2fb0d
7c91c787 90 nop eip 7291783
7c91c788 90 nop == 1b

efl 246

7291078b

12£858

68=8c8917c 0x7c91c8e8
7c91c?90 ebf2d2effff call ntdll!_SEH prolog {7c90edc?)
7c91c795 33c9 HOr ECH, BCE
To91lc?97 894den nov [ebp-0x20].2cx
7c91c79a 642118000000 mow eax, f=: [00000018] CommandLine: "C:
7c91c7al0 BbEE30 e ebx, [ea=x+0=x30] ~BASECALC EXE"
7c91c?ad 895d4do mow [ebp—0=30].eb=x Symbol =search pa
7c9lctak 7452814000000 mew dword ptr [ebp-0x58].0=x14 ~symbolcache*htt
7c91c?ad <=745ac01000000 mow dword ptr [ebp-0x54], 0=l cad-synbols:syns

The various APls associated with loading an executable all converge on the kernel32.dll
function LoadLibraryEXW which in turn leads to the internal function LdrpLoadDIl in ntdll.dll
This function directly calls 6 subroutines LdrpCheckForLoadedDIl, LdrpMapDll,
LdrpWalkImportDescriptor, LdrpUpdateLoadCount, LdrpRunlnitializeRoutines, and
LdrpClearLoadlnProgress which perform the following tasks:

. Check to see if the module is already loaded.

. Map the module and supporting information into memory.

. Walk the module's import descriptor table (find other modules this one is importing).
. Update the module's load count as well as any others brought in by this DLL.

. Initialize the module.

. Clear some sort of flag, indicating that the load has finished.

O 0 hA WNPR

44

LdrLoadD11l (8x77f889a9)
LdrpLoadDl]l 8x77f887ed

LdrpCheckForLoadedD1l {(8=x77F87122)

LdrpHapDll {@x77f8bc77)
LdrpCheckForKnownD1l (8x77fBcdZh)
LdrpResolveDllHame {8x77F8c3df)
LdrpCreateDllSection (Bx77f8c355)
LdrpAllocateDataTableEntry (8x77F8be69)
LdrpFetchiddressOfEntryPoint {Bx77F8bFf23)
LdrpInsertHemoryTableEntry {(8x77f8bebb})

LdrpWalkImportDescriptor {8x77f8be15)
LdrpLoadImportModule (8=77f8bfd1)

#LdrpCheckForLoadedD11

LdrpSnapIAT (@x77F8cA47)

LdrpSnapThunk {(8x77F87bd1)
LdrpHameToOrdinal {8x7?7F87cfA)
**LdrpLoadD11
LdrpGetProcedurefddress {(Bx77F87a2@)

LdrpCheckforLoadedD11Handle (B8x77Ff8708cc)
*x| drpSnapThunk
LdrpUpdateLoadCount (Bx77f88afa)
#*LdrpCheckForLoadedD11
*x| drpUpdatelLoadCount
LdrpRunInitializeRoutines {B8x77f8bch8)
LdrpClearLoadInProgress {Bx77FB8c12)

A DLL may import other modules that start a cascade of additional library loads. The
loader will need to loop through each module, checking to see if it needs to be loaded and
then checking its dependencies. This is where LdrpWalklmportDescriptor comes in. It has
two subroutines; LdrpLoadlmportModule and LdrpSnaplAT. First it starts with two calls to
RtllmageDirectoryEntryToData to locate the Bound Imports Descriptor and the regular
Import Descriptor tables. Note that the loader is checking for bound imports first - an app
which runs but doesn't have an import directory may have bound imports instead.

Next LdrpLoadlmportModule constructs a Unicode string for each DLL found in the Import
Directory and then employs LdrpCheckForLoadedDIll to see if they have already been
loaded.

Next the LdrpSnaplAT routine examines every DLL referenced in the Import Directory for a
value of -1 (ie again checks for bound imports first). It then changes the memory
protection of the IAT to PAGE_READWRITE and proceeds to examine each entry in the IAT
before moving on to the LdrpSnapThunk subroutine.

LdrpSnapThunk uses a function's ordinal to locate its address and determine whether or
not it is forwarded. Otherwise it calls LdrpNameToOrdinal which uses a binary search on
the export table to quickly locate the ordinal. If the function is not found it returns
STATUS_ENTRYPOINT_NOT_FOUND, otherwise it replaces the entry in the IAT with the
API's entry point and returns to LdrpSnaplAT which restores the memory protection it
changed at the beginning of its work, calls NtFlushinstructionCache to force a cache
refresh on the memory block containing the [IAT, and returns back to
LdrpWalklmportDescriptor.

There is a peculiar difference between windows versions in that win2k insists that ntdll.dll
is loaded either as a bound import or in the regular import directory before allowing an
executable to load, whereas win9x and XP will allow an app with no imports at all to load.

45

This brief overview is greatly simplified but illustrates how a call to LoadLibrary sets off a
cascade of hidden internal subroutines which are deeply nested and recursive in places.
The loader must examine every imported APl in order to calculate a real address in
memory and to see if an APl has been forwarded. Each imported DLL may bring in
additional modules and the process will be repeated over and over again until all
dependencies have been checked.

12. Navigating Imports on

46

Disk

Back to our example in the hexeditor, we will navigate the import table to see what we can
find. As we said previously, the RVA of the Import Directory is stored in the DWORD 80h
bytes from the PE header which in our example is offset 180h and the RVA is 2D000h (see
Data Directory). We now have to convert that RVA to a raw offset to peruse the correct
area of our file on disk. Check the Section Table to see which section the address of the
Import Directory lies in. In our case, the Import Directory starts at the beginning of the
.ldata section and we know that the section table holds the raw offset in the
PointerToRawData field. In our example the offset is 2ACOO0h (see section table page). Any
PE Editor will show this, e.g. LordPE:

Hame Wi ffzet WSize Rffzet FSize Flagz

CODE Qo001 oo0 OO029ESS Qoo004o0 Q0024000 BOO000Z0
DATA QOOZB000 Q000060 4 Q0024400 Qoo0oeon CO000040
B55 Q00ZC000 00000&73 OO0EAC00 Q0000oon Co0Qaaao
.idata QOoZ0000 OOOCME1E £0002ACO0% QO0001A00 Co0ooo40
Mz QO0ZF000 Q0000003 QO0ZCEO0 Q0000000 Co0Qaaao
rdata Q0030000 Qo000 & Q002CEO0 QOo00zo0 BO000040
Teloc Q0031000 Q000Z2E04 Q002CE00 Q0002C00 SO000040
NE 1o Q0034000 QOO0SECO QO0ZF400 QOO0SE DD BO000040

The difference between the RVA and Raw Offset is 2D000-2AC00=2400h. Make a note of
this as it will be useful for converting further offsets. See appendix for more info on
converting RVAs.

At offset 2ACO0 we have the Import Directory - an array of
IMAGE_IMPORT_DESCRIPTORs each of 20 bytes and repeating for each import library
(DLL) until terminated by 20 bytes of zeros. In our hexeditor we see at 2AC0O0Oh:

000Zgc00h:| 00 00 OO0 0000 OO0 00 OO0 |o0 00 00 0030 D5 02 0Of: ... veuenn. ac. .
000Zacl0h:| B4 DO 02 00|00 00 OO0 OO0 00 00 00 00 00 00 00 oo);: "B.... oo eeeennn
000Zac20h:| 06 D7 02 OO0 24 D1 02 00|00 OO0 00 OO0 00 00 00 00): .=..8H..........

Q00Z2=c30h:| 00 00 00 00 20 DY 02 00 2C D1 02 00|00 0o ad aoj: ... =..,MN......
000Zacd0h:| 00 OO0 00 00 00 00 00 00 §& DT 02 00 44 D1 02 000 S«..DH..
000Zac50h:| 00 00 00 OO0 00 00 00 00 00 00 00 00 FC D7 02 000 uveeeennnns =, .

QO0Eace0h:| 60 D1 02 0000 00 00 OO0 00 00 00 00 00 0d a0 ao0): "HN.......cceeeen.
000Z&c70h:| 4E DA 02 OO0 FO D1 02 00|00 OO0 0O OO0 00 OO0 00 00): NO..&8H..........

000zZac80h:| 00 00 00 00 30 DE 02 00 D4 D2 02 0000 OO0 00 00):0B..80.0.. ...
000Z=ac90h:| 00 00 00 00 00 00 OO0 00 F6 E6 02 00 FC D4 02 0007 vevern.. de, . 0. .
O00Zacabh:| 00 00 00 oofoo oo oo oojoo oo oo cofoo 00 oo OOf: ... eee ...
O00zachOh:| 00 00 00 00)3E DS 02 00 56 DS 02 00 6E DS 02 00 :x0..vd..nd..
000ZaccOh: 86 DS 02 00 AZ DS 02 OO0 BO DS 02 OO0 €O DS 02 00 @ +d..ed0..90. .40
000ZacdOh: CC DS 02 00 DA DS 02 00 FO DS 02 00 FE DS 0z oo ; IS, .06, .&80, .pd

Each group of 5 DWORDS represents 1 IMAGE_IMPORT_DESCRIPTOR. The first shows that
in this PE file OriginalFirstThunk, TimeDateStamp and ForwarderChain are set to O.
Eventually we come to a set of 5 DWORDS all set to O (also highlighted in red) which
signifies the end of the array. We can see we are importing functions from 8 DLLs.

IMPORTANT NOTE: the OriginalFirstThunk fields in our example are all set to zero. This is
common for executables made with Borland's compiler & linker and is noteworthy for the
following reason. In a packed executable the FirstThunk pointers will have been destroyed
but can sometimes be rebuilt by copying the duplicate OriginalFirstThunks (which many

47

simple packers do not seem to bother removing). There is actually a utility called
First_Thunk Rebuilder by Lunar_Dust which will do this. However, with Borland created
files this is not possible because the OriginalFirstThunks are all zero and there is no INT:

% First_Thunk Rebuilder 1.2

Ficst Thuak voio:

Fie 14TInfa | about |

Entry Paint: noazane4

IAT Addr 00041080

1&T File Offzet : 00041030

Orig. First Thunks Start: Original Firgt Thunks MISSING
First Thunk.s Start: <Invalids

Mumber Of DLLS: <lrevalid:

Oniginal First Thunks MIS5ING. cannot repair.

Back to our example above, the Namel field of the first IMAGE_IMPORT_DESCRIPTOR
contains the RVA 00 02 D5 30h (NB reverse byte order). Convert this to a raw offset by
subtracting 2400h (remember above) and we have 2B130h. If we look there in our PE file
we see the name of our DLL:

QO0O0EL110h: S6 E7 0OZ OO 5C E7 0Z 00 BO EY O:2 00 Ce E7 OZ OO0 ;2 tg. mg g LB
000Z2kh120h: DE E7 02 00 Fe E7 02 00 0OA ES 0OZ 00 OO0 OO0 Q0 oo ; .
6B 65 Y2 eE &5 eC 33 32 ZE 64 eC &C 00 OO0 OO OO0 A
oo 40h: 44 a5 &6 65 74 65 43 V2 69 V4 6% 63 Al aC 53 65 ; DeleteCriticalle

000Zkb150h: &3 74 69 aF 6E 00 00 OO0 4C 65 61 76 65 43 72 69 ; ction...LeaveCri
QOO0Ekb160h: 74 69 63 61 6C 53 65 63 74 69 6F 6E 00 00 OO0 00 ; tical3ection....

To continue, the FirstThunk field contains the RVA 00 02 DO B4h which converts to Raw
Offset 2ACB4h. Remember this is the offset to the array of DWORD-sized
IMAGE_THUNK_DATA structures - the IAT. This will either have its most significant bit set
(it will start with 8) and the lower part will contain the ordinal nhumber of the imported
function, or if the MSB is not set it will contain yet another RVA to the name of the function
(IMAGE_IMPORT_BY_NAME).

In our file, the DWORD at 2ACB4h is 00 02 D5 3E:
D12$l415$?$$¢b¢ﬁ1¢£

000Z=acS0h: OO0 00 00 OO0 00 OO Fé 00 7 cuvnennn g, . ud. .
(u]] Oh: OO |:u:| |:u:| 00 00 Q0. 00 00 oo |:u:| |:u:| |:u:| |:u:| |:u:| |:u:|]
00ZachOhi) 00 00 00 OO3E DS 02 00956 DS 02 00 6E DS 02 00 ;:=0,.v¥0,.nd..

O00ZaccOh: 86 D5 02 00 AZ DE Oz 00 BO DS 02 00 €O DS 02 00 @ +8..e8,. 98, JLd, .
000ZacdCOh: CC DS 02 00 DA DS 02 OO0 FO DS 02 OO0 FE DS 0z o0 @ IG..00..&80..pd0..

This is another RVA which converts to Raw Offset 2B13E. This time it should be a null-
terminated ASCII string. In our file we see:

48

T B I NN B

000Zk120h: DE E7 02 00 Fg EY OZ 00 OL ES 0OZ 00 00 OO0 OO0 00 ; Pg..0Q...8......

002k 130 6E 65 72 GE 65 6C 33 32 2F 64 6&C 6C 00 o0o|oo oof : kernElSE.dll..JT

000Zkb140h: |44 65 6C 65 74 65 43 Y2 69 74 69 63 61 6C 53 65) 7 |DeleteCriticalle

000Zkb150h: |63 74 69 &aF GE DDlDD o0 4C 65 Al 76 65 43 V2 69 ; |ction. .. Leasvelri
000Zkb160h: 74 69 63 61 &C 53 65 63 74 6% 6F /E 00 00 00 OO0 ; ticallection....

So the name of the first APl imported from kernel32.dll is DeleteCriticalSection. You may
notice the 2 zero bytes before the function name. This is the Hint element which is often
set to 00 00.

All of this can be verified by using PEBrowse Pro to parse the IAT as shown:

F] ﬁ H D @k A S B8 02 aA

E Structure for Import

Table #1 (kernel3z.dll):
TuportLookupTabklePBWA: Ox00000000

HW CODE TimeDateStanp: Ox00000000
ForwarderChain: Ox00000000
NamePWA: Ox000ZDE30 (kernel3z._ dll)
ThunkTableRVA: Ox000ZD0E4

Thunlk0dl = 0x000zZDE3E (0, DeleteCriticallection)
Thurnk0z = 0x000Z0 556 (0, LeaweCriticalSection)
Thunl03 = 0x000zZDEEE (0, EnterCriticalfection)
Thurk04 = 0x000Z0586 (0, InitializeCriticalfectior
Thunk05 = O0x000ZDE5Az (0, VirtualFree)

Thunk(e = O0x000ZDEEOQ (0, Wirtualllloc)

Thunk1? = O0x000ZDECO {0, LocalFree)

Thunk(8 = 0x000ZDECC (0, Localdlloc)

+- 3 ADVAPIZ2DLL Thunk0S = 0x0002DSDA (0, WideCharToMultiByte)

+- COMCTL32.DLL Thunkld = 0x000ZDEFD (0, TlsSetValue)

+- =3 GDIZ2.0LL Thunkll = 0x000ZDEFE (0, TlsGetWalue)

+ - KERMEL32DLL ThurnklZ = 0x000ZDE0C (0, MultiByteToWideChar)

s g OLEAUT 32 DLL Thunkl3 = 0x000ED6Zz (0, GetModuleHandleld)

s g USEHSEDLL Thunkld = O0x000ZD636 |:|:|, Get.Last.ErrI:ur:I W
+ g Resources < >

If the file had been loaded into memory, dumped and examined with the hexeditor then
the DWORD at RVA 2D0B4h which contained 3E D5 02 00 on disk would have been
overwritten by the loader with the address of DeleteCriticalSection in kernel32.dll:

D12$455?$?~$b¢ﬁ1¢#

QoO0zd0s0n: 00 oo 00 0o 00 oo oo L S S N
Q00Zdokok: 00 DD DD ooCsh 15 91 TCIED 10 QD TC DS 10 QD 7Co: L. .3.0vil0) . .O)

000Zd0cz0h: Al 9F 50 7C 14 9B 80 7C 51 94 80 7C 5D 99 30 7C ; (Y€|.€|03€|]1™€|
0O00zZd0d0k: ED 99 80 7C C7 A0 80 7?C F5 9B 80 7C 50 97 80 7C ; ¥ | £€|4§:€|P€|
QO0Zdoedh: AD 9C 80 7C 29 BS 80 7C 31 03 91 YC 8D ZC 81 7C : -eE|)p€(1.*(0,0]

Allowing for reverse byte order this is 7C91188A.

IMPORTANT NOTE: functions in system DLLs always tend to start at the address
TXXXXXXX and stay the same each time programs are loaded. However they tend to
change if you reinstall your OS and differ from one computer to another.

49

FFFF FFFF - 8000 D000
Inaccessible In User Mode

TFFF 0000 - 7FFF FFFF
Mot Mapped

System DLLs
7000 0000 - 7800 0000

4 40 0000 ImageBase
For EXE File

0. FFFF
Not Mapped

The addresses also differ according to OS, for example:

(O] Base of kernel32.dll
Win XP SP1 77E60000H
Win XP SP2 7C0O00000H
Win 2000 SP4 79430000H

Windows updates also sometimes change the base location of system DLLs. This is why
some of you may have noticed that after taking the time to manually find point-h on your
system it is prone to change unexpectedly since it is in a function inside user32.dll.

Navigating Imports in Memory

Load our example into Olly and again look at the Memory Map:

Addreszs
HE4EEE88
HE4E1 888
BE42B888
HE42C888
HE420888
B4 2F BEaE
HE438888
HE431 8688
Hid4 348688

ERASECALC
ERSECALC
ERSECALLC
ERSECALC
ERASECALLC | . i
EASECALL | .
ERASECALLC | .
ERASECALLC | .
BASECALL | .

Contains Aococess | Initial
FE header
code

data

Imag BlEBioEz
Imag BleaioEz
Imag AlEE186E2
Imag BleBioEz
Imag BleBioEz
Imag B1EE18GEZ
Imag BleaioEz
Imag BlEBioEz
Imag B1EE1EGEZ

imports

relocat lons
CESOUrCES

DD mmInnmdm

50

Note the address of the .idata section is 42D000 which corresponds to the RVA 2D000
shown at the top of this page as VOffset. The size has been rounded up to 2000 to fit
memory page boundaries.

The main (CPU) window of Olly will only show the IAT if it lies in the executable CODE
section (addresses 401000 to 42AFFF in our example), however in most cases it will be in
its own section e.g. .idata. You can view the IAT in Olly's hex-dump window by
rightclicking the appropriate section in the memory map and selecting Dump in CPU. Now
rightclick in the hex window and select Long>Address and you will see the IAT in a
readable list:

Address |Ualue Comment
AE420EAC | BREEEEEE
BE420EEE | BEEEEEEE
AE420EE4 | FCF1188A | ntdL LRt 10 leteCrit icalSect ion L=
HE420EES | PCPE1B8ED| ntdl L. Rt ILeaveCr it icalSect ion

AE420EEC| FCPE1EE5 | ntdl L. Rt LEnterCrit icalSect ion

HE4206ECH | FCBEOFAL | kerne l32. InitializeCriticalSect ion

HE420EC4 | FCEE9B14 | kerne l32.VirtualFres

BE420ECE8 | FCBE9AS] | kerne l32.VirtualAl loc

AE420ECC | FCBE9950| kerne L322 LocalFrees

BE420E06 | FCBE99E0| kerne l32.LocalAl Loz

HE420604 | FCBEABCY | kerne 32 WideCharTolMu Lt iBute

AE4206058| FCBE9EFS| kerne L32. TlsSetUalue

BE42060C | FCBE97EE| kerne L32. TlsGetWalue

HE420EEE | FCBEPCAD| kerne 32 Mu Lt iByteTollideChar

HE4206E4 | FCBEES29| kerne L32. GetModu lLeHandleR

AE420EES| FCP18331 | ntdl L. Rt lGetLastlin32Error

BE420EEC | FCE12C80| kerne L32. GetCommandL iner

BE4206FE | FCB1EF9F | kerne l32.WriteFile

AE4206F4 | FCB100AG| kerne l32.5etFilePointer

HE420EFS | FCE1FE5E| kerne L32. SetEndfF i le

AE420EFC| FC937A4E | ntdL L. Rt lUnwind

AE420166| FCBE180E | kerne l32.ReadFi le

HE420164 | FCE1EREL | kerne l22.RaiseExcept ion

AE4201858| FCB12CA9| kerne L32. GetStdHand e

AE420160| FCB1BCEF | kerne l32.GetFileSize

AE4201168| FCB11BE9 kerne L322, GetFileType

HE420114)| PCRICARZ | kerne L32.Ex itProcess

AE4201158| FCBB1AZ4 | kerne l32.CreateF i leA

HE4201 10 FCBE9BFY | kerne l32.CloseHandle

HE420126 | BEEEEEEE
BEdz20124 | FPOEE4ER| user3Z. MessageBaouA
BE4201258 | BEAEEEEE
HE420120) PR126504) oleaut32.Var iantChangeTupeEn hal

(>

This makes finding the beginning and end of the IAT easy and is useful when using
IMmpREC as the IAT Autosearch function can be inaccurate. It is good to be able to check
the beginning and endpoint to avoid having to type in a large size value which will give
many false negatives with IAT Autosearch.

The names window (press Ctrl+N) will show you imported functions:

[l Names in BASECALC

Address | Section| Tupe Hame Comment ES
BE4204C8 | . idata | Import |user2Z.0efMDICh L LdProcH ——
BEa4z204EC | . idata | Import |uwser32.0DefllindowProcA
BEa4z208E4 | . idata | Import |kecnel32.0eleteCrit icalSect ion —
BE42023C | . idata | Import | aodisz.DeleteDC

BE4z20298 | . idata | Import |odiZZ.DeleteEnhMetaFile
BEa4z204ES | . idata | Import |user3z2.DeleteMenu
@e420294 | . idata | Import |adi3z.Deletelbject

Ca A S AT A

<

Rightclicking any of these and selecting Find References to Import will show you the jump
thunk stub and the instances in the code where the function is called (only 1 in this case):

E!_ References in BASECALC:CODE to kernel3?2.DeleteCriticalSection

Address |Disassembly Comment ~

ood4E1314| JMP OWORD PTR D5:[<&kernel32.0eleteCriticalSection>] [ntdll.Rt lDeleteCriticalSect ion
BE4E1B12| CALL <JMP. &kernel32.0e leteCrit icalSect ion

51

NOTE: in the comment column you will see that Olly has determined that the kernel32.dll
function DeleteCriticalSection is actually forwarded to RtlDeleteCriticalSection in ntdll.dll
(see export forwarding for explanation).

Rightclicking and selecting Follow Import in Disassembler will show you the address in the
appropriate DLL where the function's code starts e.g. starts at 7C91188A in ntdll.DLL:

OllyDbg - BASECALC. EXE - [CPU - main thread, module ntdll]

File Wiew Debug Pluginsg Options Window Help

S x| w|l] wilvd] ¥4 4] 4 L|E|M|T|WH|[C|/|K[B|R|.|S]

rC21182R 5 GH iC FUSH 1C

rColigec S B213917C |PUSH ntdll.7C3119683

rC211891) . EE ECDEFFFF CALL ntdll.7CY8EDCE

rCoiie9s| . MOL EEX, DWORD FTR SS5: CEEF+2]
rCoiiessl . 8843 18 MOV ERX, OWORD PTR DS: [CEER+1@]
FC21189C) . 85CH TEST ERX,ERX

TCO1123E| ,~BFS5 S57E@@RE| JMZ ntdll.7Co19720
fC3112R4] » 9365 E4. 8@ |BMD DWORD PTR_SS:[EBP-1CI,E

If we look at the call to DeleteCriticalSection at 00401B12 we see this:

OllyDbg - BASECALC. EXE - [CPU - main thread, module BASECALC]

File Wi Del:uug F‘Iugins Optiu:uns Window Help

HE4E1AFS S 1F1B4R08 FUSH BASECALC.BR481EB1F

ea4a1aFa| SBSD 2aCH4288| CHP BYTE PTR DS5:[42CH36],8

BE4E1BE]L| .~74 BAH JE SHORT EBRASECALC. BE481E6D

HE4E1BEZ) . 68 2EC44288 FUSH BASECALC.HH42C428 [pErltlcalSectlnn = BASECALC.A842C428
BE4H1BES) . ES FFFPFFFF CALL <JHF.&kernel32.LeavelriticalSectiolkLeavelrit icalSect ion

HE4E1BED| > &8 2EC442EE FUSH BASECALC. HA42C428 [pErltlcalSectlun = BRSECHLLC.BE42C4268
BE4H1B12 . ES FOFFFFFF CALL «JHMP.&kernel32.0eleteCriticalSect ifkDeletelriticalSect ion

bE4E1B17(. C3 RETH

EE4H1E1S] .+E9 AZ120688 JHMP BRSECALC. HH4E2ECE

Ba4a1ein) .~EE DB JHP SHORT BRSECALC. B8481AFA
BE4a81B1F| » 5B FOF EEX

Bad4aie2a) . 50 FOFP EBP

BE4E1E21 C3 RETH

BE4E131 4= JHP Lkerne l32.0eleteCr it icalSect ion »

Address of jmp stub pointing to [AT

This is really "CALL 00401314" but Olly has already substituted the function name for us.
401314 is the address of the jmp stub pointing to the IAT. Note it is part of a jmp thunk
table as described previously:

OllyDbg - BASECALC. EXE - [CPU - main thread, module BASECALC]
@ File Wiew Debug Plgins Options Window Help

al gm AN . T
S x| wn] wijsf $4 ¥ o LE[M|T|WH[c|/|K[B|R[...|8] E5[IE?
HE4E12ER SECH MOL ERX, EAR
HE4E12EC| $-FF25 C80A4268) JMP OWORD PTR DS:[<&kernel32.UirtualAlly kernel32.UVirtualAlloc
HE4E12F2 SECH MOU ERX, EAX
HE4E12F4| $-FF25 C4D84286) JHMP OWORD PTR DS:[<&kernel32.UirtualFrey kernel32.UirtualFree
BE4E12FA SECH MOL ERX, EAR
BE4E12FC) $-FF25 CaDE426E8| JMF DWORD PTR DS:[<&kernel32.Initializel kernel32.InitializeCriticalSection
HE4E1382 SECH MOL ERX, EAR
HE4E13E4| $-FF25 BCOA426H| JHMP DWORD PTR DS:[<&kernel32.EnterCritiy ntdll.Rt lEnterCriticalSection
BE4E1 38R SECH MOL ERX, EAR
AE4E13ac| $-FF25 BSD@A4266| JHMP OWORD PTR DS:[<&kernel32.LeaveCritiy ntdll.Rt lLeaveCriticalSection
HE4E1312 SECH MOV ERE, EFR
BE481314| $-FF25 B4D@428H J1F OWORD PTR DS:[<&kernel32.0eleteCrit| ntdll.Rtl0=leteCriticalSection
HE4E131A SECH HMOL EF, EAR
O5: [EE4208B41=rC211228A (ntdll.Rt DeleteCriticalSection]
Local call from BE8481B1Z2

This is really "JMP DWORD PTR DS:[0042DO0B4]" but again Olly has substituted the
symbolic name for us. Address 0042D0B4 contains the Image_Thunk_Data structure in the
IAT which has been overwritten by the loader with the actual address of the function in
kernel32.DLL: 7C91188A. This is what we found earlier by rightclicking and selecting
Follow Import in Disassembler and also from the dumped file above.

52

13. Adding Code to a PE
File

It is often necessary to add code to a program in order to either crack a protection scheme
or more usually to add functionality to it. There are 3 main ways to add code to an
executable:

1. Add to an existing section when there is enough space for your code.

2. Enlarge an existing section when there is not enough space.
3. Add an entirely new section.

Adding to an existing section

We need a section in the file that is mapped with execution privileges in memory so the
simplest is to try the CODE section. We then need an area in this section occupied by 00
byte padding. This is the concept of "caves". To find a suitable cave, look at the CODE
Section details in LORDPE:

[section Table]

M ame Wffzet YWSize ROffzet RSize Flags

oa ooo2a000 BOCOOOZ0
DATA Q0o2B000 Q0000s0 4 Q0024400 Q00ooEn0 CO0oo040
B55 Q0o2C000 Q0000673 Qoo2ac00 Q0000000 CO0oo000
.idata s a0aoatE Q0024C00 000 A00 CO00o040
i Q002000 Q00oo00s Q002CE00 Q0000000 CO0ooo00
rdata Q0030000 0000013 Q002CE00 0000200 A0000040
relac Q0031000 nooozend Q0o2Cen0 Q00o2Co0 A0000040
Nl Q0034000 Q0008E 0 Q002F400 e A0000040

Here we see that the VirtualSize is slightly less than SizeOfRawData. The virtual size
represents the amount of actual code. The size of raw data defines the amount of space
taken up in the file sitting on your hard disk. Note that the virtual size in this case is lower
than that on the hard disk. This is because compilers often have to round up the size to
align a section on some boundary. In the hexeditor at the end of the code section (just
before DATA section begins at 2A400h) we see:

53

000Zs250k: 10 93 FD FF 8B ES5 5D €3 FF FF FF FF OF OO0 00 OO0 ; .“??cé]i????....
000Zaz260h: 42 61 73 65 20 43 61 6C 63 75 6C 61 74 6F 72 00 ; Base Calculator.
000Za270h: FF FF FF FF OC OO0 OO0 00O 42 41 53 45 43 41 4C 43 @ §9¥¥¥....BASECALC
000ZaZ250h:
0o0Z2az290h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
go0Z2azabh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o Qo
0o0Z2azhih: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o Oo
Oo0Z2azcOh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
0002 a2d0h: 00 OO0 00 OO 00 OO0 00 00 00 00 00 OO 00 oo
Oo0Z2azelh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
Oo0Z2azf0h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
000Z&a300h: 00 00 00 OO 00 OO0 00 00 00 00 00 OO0 00 oo
0o002a310h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
0o0Z2aszZ0h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
0o002a330h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o Oo
0o00Z2a340h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
000Z2=a350h: 00 OO0 00 OO 00 OO0 00 00 00 00 00 OO 00 oo
Oo0Z2ase0h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
0o02a370oh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
000Z&a3500h: 00 00 00 OO 00 OO0 00 00 00 00 00 OO0 00 oo
0o002a390h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
Oo0Z2as=abh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
0o00Z2as3hih: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o Oo
0o0Z2ascOh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
000Z2a3d0h: 00 OO0 00 OO 00 OO0 00 00 00 00 00 OO0 00 oo
Oo0Z2aselh: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
O002asf0h: 00 00 00 00 00 00 Q00 00 OO0 OO0 00 00 0o ao
(00z=400nD 02 00 §B CO 00 &D 40 OO0 38 20 40 00 CO 21 40 00 ; ..cA.08.5 B.410.
000Z=d1i0h: 34 25 40 00 32 1F 8B CO 32 13 8B CO 52 75 6E 74 ; 43%@.2.¢AZ.¢ARunt
000Z=a420h: 69 6D 65 20 65 72 72 6F 72 20 20 20 20 20 61 74 ; ime error at
000Z=s430h: 20 30 30 30 30 30 30 30 30 00 45 72 72 eF 72 00 : 00OO000OOQO.Error.

This extra space is totally unused and not loaded into memory. We need to ensure that
instructions we place there will be loaded into memory. We do this by altering the size
attributes. Right now the virtual size of this section is only 29E88, because that is all the
compiler needed. We need a little more, so in LordPE change the virtual size of the CODE
section all the way up to 29FFF which is the max size we can use (the entire raw size is
only 2A000). To do this rightclick the CODE line and select edit header, make the changes
click save and enter.

Once that is done we have a suitable place to store our patch code. The only thing we
have changed is the VirtualSize DWORD for the CODE section in the Section Table. We
could have done this manually with the hexeditor.

To illustrate this further we will add to our example program a small ASM stub that
highjacks the entrypoint and then just returns execution to the OriginalEntryPoint. We will
do this in Olly.

First note in LordPE the EntryPoint is 0002ADB4 and ImageBase is 400000. When we load
the app in Olly the EP will therefore be 0042ADB4. We will add the following lines and then
change the entry point to the first line of code:

MOV EAX,0042ADB4 ; Load in EAX the Original Entry Point (OEP)
JMP EAX ; Jump to OEP

We will put them at 0002A300h as seen above in the hexeditor. To convert this raw offset
to an RVA for use in Olly use the following formula (see appendix):

Lz

St

54

RVA = raw offset - raw offset of section +virtual offset of section +ImageBase
= 2A300h - 400h +1000h + 400000h = 42AF00h.

So load the app in Olly and jump to our target section (press Ctrl+G and enter 42AF00).
Press space, type in the first line of code and click assemble. The next line down should
now be highlighted so type in the second line of code and click assemble:

g'?i".'?"-'“’:"'-‘:"’-‘T_-"'_é_:;-"v‘ﬁ CALC, EXE - [CPU - main thread, module BASECALC]

BE4ZREFT
BE42AEFD
B842HEFE
BE4ZREFF
BB ZAFEE
BA42AFEE
BE42AFET
BE4ZAFE2
Ba42AFES
BE42AFER
BE42AFEE
BE4ZAFEC
BE4ZAFE0
B84 2AFEE
GE42AFEF
BE42AF1E

W Fill with NDP's

Now rightclick, select copy to executable and all modifications. Click copy all then a new
window will open. Rightclick in the new window and select save file etc. Now back in
LordPE (or hexeditor) change the EntryPoint to O002AF00 (ImageBase subtracted) click
save and then OK. Now run the app to test it and reopen it in Olly to see your new
EntryPoint. In the hexeditor it looks like this - new code is highlighted:

o3 2 7 4 5 g 1 5 ? a b ¢ d E 4

O00Z=aZ40h: SE 03 El 7z FF SE 73 ES ; «<.2ariic .ejsvi[e
O00Zs250h: 10 953 FD FF SE ES 5D €3 FF FF FF FF OF 00 00 00 ; . i &] L. ...
O00ZaZ60h: 42 61 73 65 20 43 61 6C 63 75 6C 61 74 6F 72 00 ; Base Calculator.

O00Zs270h: FF FF FF FF 0OC 00 00 00 42 41 53 45 43 41 4C 43 ; %444, ...BASECALC
O00Z2250h: 2E 45 4C 50 00 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 ; HLE..e'uus'un..
O00Z=a290h: OO0 00 00 00 00 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 vuuerenrnnsrnns
O00ZsZa0h: OO0 OO0 00 00 OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 7 vuuevnnenneennn.
000Z&a2k0h: OO0 OO0 OO0 00 00 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 7 vuurvenrnneennn.
O00Zs2c0h: OO0 OO0 OO0 00 OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 7 vuuevnnrnneennn.
O00Zs2d0h: OO0 OO0 00 00 00 OO0 OO0 OO0 00 OO0 00 OO0 00 00 00 00 7 vuuevnnrnneennn.
O00ZazZelh: 00 00 00 00 00 00 00 00 5 vevvrnennernnens
O00ZaZf0h: 00 00 00 00 00 00 00 00 5 vevvrnennernnens
000Z&a300h: 00 00 00 00 00 00 00 00 ; . -Bof@eeeennen.
000Z&310h: 00 OO0 00 00 00 00 00 00 7 vevvnnenneennenn

ANN2?2 =220k OO0 On On ;o nmn oo oo oo o a;n an oo oo oo amn an ;nn

Although this was only a tiny patch, we actually had room for 368 bytes of new code!

Enlarging an Existing Section

If there is not sufficient space at the end of the text section you will need to extend it. This
poses a number of problems:

1. If the section is followed by other sections then you will need to move the following
sections up to make room

2. There are various references within the file headers that will need to be adjusted if you
change the file size.

3. References between various sections (such as references to data values from the code

55

section) will all need to be adjusted. This is practically impossible to do without re-
compiling and re-linking the original file.

Most of these problems can be avoided by appending to the last section in the exe file. It
is not relevant what that section is as we can make it suit our needs by changing the
Characteristics field in the Section Table either manually or with LordPE.

First we locate the final section and make it readable and executable. As we said earlier
the code section is ideal for a patch because its characteristics flags are 60000020 which
means code, executable and readable (see appendix). However if we were to put code and
data into this section we would get a page fault since it is not writable. To alter this we
would need to add the flag 80000000 which gives a new value of EO000020 for code,
executable, readable and writable.

Likewise if the final section is .reloc then the flags will typically be 42000040 for initialised
data, discardable and read-only. In order to use this section we must add code, executable
and writable and we must subtract discardable to ensure that the loader maps this section
into memory. This gives us a new value of EO000060.

This can either be done manually by adding up the flags and editing the Characteristics
field of the Section header with your hexeditor or LordPE will do it. In our example the last
section is Resources:

56

[PE Editor] - c:\program filesihex lools\basecalc.exe

i~ Basic PE Header Information 1
; (1] 4
[o002 .| -

EntryPaint: 00024DB4 Subsystem: g
ImageBase: | 00400000 NumbeDiSections: | 0008 ;ml

SizeDfimage: 0003CEO0 TimeDateStamp: 28475619 1 Sedions
BaseOiCode: | 00001000 SieOfHeaders | 00000400 2] +| | | pieciories |
BaseOfData | 0D02B000 Characteristics: [eeE]| —

Sectiondlignment: Im Checksum: Im_?_l W
FleAignment | 00000200 SizeDiDptionaHeader

Magic: [0108 NumOMvandSizes | 00000010 | +| - | Compare

Name | MOMfset | VSize | RAOffset | | Flags
CODE 00001000 000Z3E88 00000400 00024000 50000020
DATA nooze0o0 Doo00ED 4 00024400 00000200 C0000040
BSS Do02Co00 0oo00eTs 000z&C00 00000000 CO000000
Jidata 0oo20000 00001EE 000Z24C00 000071400 CO000040

M DO02F000 D000000s 00020600 00000000 0000000
Idata 00030000 000000 s 0002C600 00000200 50000040
teloc 00031000 Ooo0Eze04 0002C800 00002C00 50000040

DOOOBEQD 00O02F400

; I JEC L
Vitualdddress: | 00034000] Feadable _ Concel |
VitualSizee | ODOOBEDD] wiiteable
FRawOifset 0002F400 Contains extende

Discardable as
RawSize: | ooooseoo Nt:m't be cached
Flags: [50000040 | ...|3, ot Degees
_ _ 1 Contains COMDAT data 4. Check

Caontains comments of other infos boxes
‘Won't become part of the image
| Containg executable code

vl Containg initishzed data
|| Contairs uninitialized data

Shouldn't be ed to next boundary
o padd ne i~ Current Value

Alignment: | default | Bytes 50000040

This gives us a final Characteristics value of FOOO0060. Above we see the RawSize (on
disk) of this section is 8E00 bytes but all of this seems to be in use (the VirualSize is the
same). Now edit these and add 100h bytes to both to extend the section, the new value is
8FO0Oh. There are some other important values which need to be changed. The
SizeOflmage field in the PE header needs to be increased by the same amount from
0003CEOO to 0003CFOOh.

There are 2 other fields which are not shown in LordPE which are less critical; SizeOfCode
and SizeOflnitialisedData fields in the Optional Header. The app will still run without these
being altered but you may wish to change them for completeness. We will have to edit
these manually. Both are DWORDs at offsets 1C and 20 from the start of the PE header

(see appendix):

57

01 ¢ 3 4 5 $? 3 3 a b o d g %

oo0oao0f0oh 00 00 00 00 00 ;... i e i e i iennns
00000100k:) 50 45 00 00 |42 01 O 00 19 5E 42 H

o0000110h: 00 SE &1 0B 01 02

00000120h:| 00 DE 00 OO |00 00 00 00 B4 AD OZ .

00000130h: OU 00 40 00 00 10 00 00 00 02 OO0 00 @ .*....@.........

The values are 0002A000 and OOOODEOO respectively. Add 100h on to these to make
0002A100 and O0O0OODFO00. With reverse byte order the values are: 00 A1 02 00 and 00 00
DF 00. Finally copy and paste 100h of 00 bytes (16 rows in the hexeditor) onto the end of
the section and save changes. Run the file to test for errors.

Adding a New Section

In some circumstances you may need to make a copy of an existing section to defeat self-
checking procedures (such as in SafeDisk) or make a new section to hold code when
proprietary information has been appended to the end of the file (as in Delphi compiled

apps).

The first job is to find the NumberOfSections field in the PE header and increase it by 1.
Again most of these changes can be made with LordPE or manually with your trusty
hexeditor. Now in your hexeditor copy and paste 100h of 00 bytes (16 rows) onto the end
of the file and make a note of the offset of the first new line. In our case it is 00038200h.
This will be the start of our new section and will go in the RawOffset field of the section
header. While we are here it is probably a good time to increase SizeOflmage by 100h
bytes as we have done before.

Next we need to find the section headers beginning at offset F8 from the PE header. It is
not necessary for these to be terminated by a header full of zeros. The number of headers
is given by NumberOfSections and there is usually some space at the end before the
sections themselves start (aligned to the FileAlignment value). Find the last section and
add a new one after it:

1 2 3 4 5 & ¥ 8 9 2 b e d e {
2E 72 64 61 74 61 00 00 18 00 00 00 00 0O O

oooo0Z2c0h: 3 oo e £ o
oooo0z2d0h: 00 02 00 00 00 €6 02 00 00 00 OO0 OO0 Q0 a0 oo aod ;o o..... . e oo
Q00002e0h: OO OO OO OO 40 OO0 OO0 50 Z2E 72 65 6C 6F &3 00 OO0 ; P.reloo.
oooooz£f0h: 04 2ZE OO0 OO OO0 10 03 00 00 2C 00 00 00 €8 02 00 ;7 +....... FFrrLF
00000300k: 00 OO0 QOO0 QOO0 OO0 00 OO0 00 OO0 00 00 00 40 00 00 50 ; .. eeeeneean E..P
00000310hk: 2E 72 73 72 63 00 OO0 OO OO SE OO OO OO 40 O3 oo A [
00000320h: 00 SE QOO0 OO OO F4 02 00 00 OO0 OO0 OO0 00 Q0 00 00 ;7 .Z. . .0..eeeueeas
000003300h: oo 00 o0 40 00 oo 50 ;

00000340h: oo H

000003 50h: oo L ;

000003 60k: 00 OO OO0 OO OO OO OO OO OO0 OO0 00 00 00 00 00 00 7 o ee e e s eennnnas
00000370h: 00 OO0 OO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 a0 00 00 ;7 @ e eneennnnas
000003580h: 00 OO0 QOO0 OO0 OO0 OO0 OO0 00 00 00 00 00 00 a0 00 00 ;7 @ e eneennnnas
00000320k: 00 OO0 OO0 OO0 OO0 OO0 OO 00O OO0 00 00 00 00 00 00 00 ;7 @ ee i e neennnnas

The next thing we have to do is decide which Virtual Offset/Virtual Size/Raw Offset and Raw Size our
section should have. To decide this, we need the following values:

58

Virtual offset of formerly last section (.rsrc): 34000h
Virtual size of formerly last section (.rsrc): 8EOOh
Raw offset of formerly last section (.rsrc): 2F400h
Raw size of formerly last section (.rsrc): 8E0Oh
Section Alignment: 1000h

File Alignment: 200h

The RVA and raw offset of our new section must be aligned to the above boundaries. The
Raw Offset of the section is 00038200h as we said above (which luckily fits with
FileAlignment). To get the Virtual Offset of our section we have to calculate this:
VirtualAddress of .rsrc + VirtualSize of .rsrc = 3CEOOh. Since our SectionAlignment is
1000h we must round this up to the nearest 1000 which makes 3D0O00h. So let's fill the
header of our section:

The first 8 bytes will be Namel (max. 8 chars e.g. "NEW" will be 4E 45 57 00 00 00 00 00 (byte
order not reversed)

The next DWORD is VirtualSize = 100h (with reverse byte order = 00 01 00 00)
The next DWORD is VirtualAddress = 3D000h (with reverse byte order = 00 DO 03 00)
The next DWORD is SizeOfRawData = 100h (with reverse byte order = 00 01 00 00)

The next DWORD is PointerToRawData = 38200h (with reverse byte order = 00 82 03 00)

The next 12 bytes can be left null

The final DWORD is Characteristics = EO000060 (for code, executable, read and write as discussed
above)

In our hexeditor we see:

0 : 4 f

1 ¢ v & 7 8§ 3 2 b g d e
00000310k: 2E 72 73 72 63 00 00 00 OO0 SE 00 OO OO 40 03 0O LB
00O000320k: 00 SE 00 OO 00 F4 02 00 00 00 00 00 00 00 00 00 ; .Z...6..........

00000330h: 00 00 00 OO0 40 OO0 00 50| 4E 45 57 00 00 OO0 00 0O0);E..PHEW.....
Q00005400 I o0 01 oo oo I o0 Do 03 00jo0 01 00 0000 52 03 00f: b.o.o..... .
Q0000350k: 00 00 00 OO0 00 00 0d ad 00 00 00 OOfED 00 00 &0f: ... evevnnn &. .

000003 60k: OO0 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 e e e ennnnnsns

Save changes, run to test for errors and examine in LordPE:

59

[PE Editor] - c:\program files\hex tools\basecalc.exe
- Basic PE Header Information -
i oK
e |2

EntiyPaoint: 00028DE4 Subsystem: e

ImageBase: 00400000 NumberOfSections: | 0009 —l
SizeOflmage 00020100 TimeDateStamp: PMZENS] | |Sectons |
BaseDiCode: 00001000 SizeDfHeaders [21L«] | [Dectotes

| oooooson
BaseOfData: 00028000 Charactenstics: | 818E [
Sectiondlignment: | 00001000 Checksum: [00000000 | 2 | e
FileAlgnment: 00000200 SizeOfCiptionaHeader, | OOEQ S —
Magic: 0108 NumOfRvadndSizes: | 00000010 | +| -| =202 |
L

Name | VOffset | VSe | ROfiset | RSze | Flags -

BSS Doo2Coon 00000678 Ooozacon 00000000 CO000000

Jidata DoozDoo0n OoooelE Ooozacon 00001400 COO00040

Ms 0002F 000 00000008 0002CE00 00000000 CO000000

JIdata 00030000 0ooooma 0002Ce00 00000200 50000040

Jeloc 00031000 0ooo2e0d 0oo2Cenn oogo2Ccon 50000040

Nl 00034000 Ooo0SEoD O002F400 OooCsEDn 50000040 |
NEW 00030000 000001 00 00038200 000001 00 E00000ED [F
1 b

VitualSize: | 00000100
RawOffset: | 00038200
RawSize: | 00000100
Flags: 600000E0 []

14. Adding Import to an

60

Executable

This is most often used in the context of patching a target app where we don't have the
API's we need. To recap, the minimum information needed by the loader to produce a valid
IAT is:

1. Each DLL must be declared with an IMAGE_IMPORT_DESCRIPTOR (11D),
remembering to close the Import Directory with a null-filled one.

2. Each IID needs at least Namel and FirstThunk fields, the rest can be set to O (setting
OriginalFirstThunk = FirstThunk i.e. duplicating the RVAs also works).

3. Each entry of the FirstThunk must be an RVA to an Image_Thunk_Data (the IAT) which
in turn contains a further RVA to the APl name. The name will be a null terminated ASCII
string of variable length and preceded by 2 bytes (hint) which can be set to 0.

4. If 11Ds have been added then the isize field of the Import Table in the Data Directory
may need changing. The IAT entries in Data Directory need not be altered (see import
theory section).

Writing new import data in a hexeditor and then pasting into your target can be very time-
consuming. There are tools which can automate this process (e.g. SnippetCreator,
1IDKing, Cavewriter - see bottom of page) but as always an understanding of how to do it
manually is much better. The main task is to append a new IID onto the end of the import
table - you need 20 bytes for each DLL used, not forgetting 20 for the null-terminator. In
nearly all cases there will be no space at the end of the existing import table so we will
make a copy and relocate it somewhere there is space.

Step 1 - create space for new a new 11D

This involves the following steps:

1) Move all the IIDs to a location where there is plenty of space. This can be anywhere;
the end of the current .idata section or an entirely new section.
2) Update the RVA of the new Import Directory in the Data Directory of the PE header.
3) If necessary, round up the size of the section where you’ve put the new Import Table so
everything is mapped in memory (e.g. VirtualSize of the .idata section rounded up 1000h).
4) Run it and if it works proceed to step 2. If it doesn’t check the injected descriptors are
mapped in memory and that the RVA of the Import Directory is correct...

IMPORTANT NOTE: the 1IDs, FirstThunk and OriginalFirstThunk contain RVAs - RELATIVE
ADDRESSES - which means you can cut and paste the Import Directory (I11Ds) wherever
you want in your PE file (taking into account the destination has to mapped into memory)
and simply changing the RVA (and size if necessary) of the Import Directory in the Data
Directory will make the app work perfectly.

Back to our example in the hexeditor, the first 11D and the null terminator are outline in
red. As you can see there is no space after the null I11D:

61

000ZacO0Oh:| 00 00 00 O0j00 OO0 OO0 00|00 OO0 OO0 OO0]30 D5 0Z O00]7 wueveecnnnn. Q.
000Zacl0Oh:|E4 DO 02 00|00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 00 00 002 "Puveeerenenns
000zacz0Oh:| 06 D7 02 00 24 D1 02 0000 OO OO0 OO0 OO0 OO0 00 O0f; .=..80.........
000Zac30h:| 00 00 00 00 20 DY 02 00 2C D1 02 00|00 OO QOO QO ; R pi
000zZacd0h:| 00 00 00 OO0 OO0 OO0 OO0 00 S& D7 02 00 44 D1 02 002 «cueeu.n. =, .DH.
0002acE0k:| 00 00 00 OO0 OO0 OO0 00 00 OO0 OO0 00 00 FC D7 02 00)2 «ueeeenrenns ii=
000zZac60h:| 60 D1 02 0000 OO0 00 00 OO0 OO0 OO0 OO0 00 00 00 00/ “Heveeeeenennn.
000Zac?0h:| 4E DA 02 00 FO D1 0Z 00|00 OO0 OO0 OO0 OO0 OO0 00 00| NU..88.........
0O00zZacE0k:| 00 00 00 OO0 30 DE 02 00 D4 D2 02 O0(00 OO0 0O 0O : LOB. LG0T, Ly
000zZacS0k: | 00 00 00 OO0 OO0 OO0 OO0 00 F6 E6 02 00 FC D42 02 002 «veeu... g, ..
O00zZaca0h:| 00 00 oo oojoo oo oo oofoo oo oo oofoo oo oo oof: ...,
000zZackhOh:| 00 00 00 00|3E DS 02 00 56 DS 02 00 6E DS 02 00 ;x0.. V0. . nd.
000ZaccOh: S6 DS 02 00 A2 DS 0Z 00 BEO DS 02 00 CO DS 02 00 @ tO..e¢d. .0, A0,
O00ZacdOh: CC D5 02 00 DA DS 0OZ OO0 FO DS 02 00 FE DS 0z o0 ;@ I&..08..86..p8
However there is a large amount of space at the end of the .idata section before .rdata

starts. We will copy
location:

and paste the existing 1IDs shown above to offset 2C500h at this new

T
000Zgdf0h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7 .vevreoneenn....
@002ze500E) |00 00 00 00 00 00 00 00 00 00 00 00 30 DS 02 00); «voeeennn... 0d. .
000Ze510h: | B4 DO 02 00[00 00 00 00 00 00 00 00 00 00 00 00 "Beueerrrenennn.
0002cS520h: |06 D7 02 00 24 D1 0z 00[00 OO0 00 00 00 00 00 00);: .x..80....uun...
0002c530h: | 00 00 00 00 20 D7 0z 00 2C D1 0z 0000 00 OO0 00| S
0002c540h: |00 00 00 00 00 00 00 00 84 D7 02 00 44 D1 02 00); ..o.ue... 4« .DH..
0002c550h: | 00 00 00 OO0 00 00 00 00 00 00 00 00 FC D7 02 00]7 wevvreevnns. i
0002c560h: |60 D1 02 00[00 00 00 00 00 00 00 00 00 00 00 00);: “Hevevviervnn...
0002c570h: | 4E DA 02 00 FO D1 02 00[00 00 00 00 00 00 00 00| ; NO..&f..........
0002c580h: |00 00 00 OO0 30 DE Oz 00 D4 D2 02 0000 00 00 00);0B..00......
0002c590h: | 00 00 00 00 00 00 00 00 F6 E6 02 00 FC D4 02 00/ «oove... e, . 0. .
0002eS=a0h: [00 00 00 00|00 OO0 00 00|00 OO0 00 00|00 OO0 OO aof—.Our new 1[0, .
0002cSb0h: [00 00 00 00|00 00 00 00 00 0O 00 00 B0 00 00 BOJgr . -.oiz--ers -
0002e5c0h: |00 00 00 00 0o oo oo oofoo oo oo oo oo oo oo oo b —Mul ferminatar, .
0002cS5d0h: 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 § eruerrenneenne..
0002c5e0h: 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 ; euueerenneenne..

To convert the new offset to an RVA (see appendix):

VA = RawOffset - RawOffsetOfSection + VirtualOffsetOfSection

= 2C500 - 2AC00 + 2D000 = 2E900h

So change the virtual address of the import table in the data directory from 2D000 to
2E900. Now edit the .idata section header and make VirtualSize equal to RawSize so the
loader will map the whole section in. Run the app to test it.

62

Step 2 - Add the new DLL and function details

This involves the following steps:

1) Add null-terminated ASCII strings of the names of your DLL and function to a free
space in the .idata section. The function name will actually be an Image_Import_By_Name
structure preceded by a null WORD (the hint field).

2) Calculate the RVAs of the above strings.

3) Add the RVA of the DLL name to the Namel field of your new IID.

4) Find another DWORD sized space and put in it the RVA of the hint/function name. This
becomes the Image_Thunk_Data or IAT of our new DLL.

5) Calculate the RVA of the above Image_Thunk_Data DWORD and add it to the
FirstThunk field of your new IID.

6) Run the app to test...your new API is ready to be called...

In order to fill in our new IID we need at the very least Namel and FirstThunk fields (the
others can be nulled). As we already know, the Namel field contains the RVA of the name
of the DLL in null-terminated ASCII. The FirstThunk field contains the RVA of an
Image_Thunk_Data structure which in turn contains yet another RVA of the name of the
function in null-terminated ASCII. The name however is preceded by 2 bytes (Hint) which
can be set to zero.

Say for example we want to use the function LZCopy which copies a source file to a
destination file. If the source file is compressed with the Microsoft File Compression Utility
(COMPRESS.EXE), this function creates a decompressed destination file. If the source file
is not compressed, this function duplicates the original file.

This function resides in 1z32.dll which is not currently used by our app. Therefore we first
need to add strings for the names "1z32.dlI" and "LZCopy". Scroll upwards in the hexeditor
from your new import table towards the end of the preexisting data and add the DLL name
then the function name onto the end. Note the null bytes after each string and the null
WORD before the function name:

W3 ¢ 3 4 9% & § ¥ 7 @ b ¢ d 2 4

000Zc3if0h: a5 492 63 a6F 6E 00 00 OO0 49 6D 61 &7 65 4C 69 73 ; elcon...Imagelis

000Zcd400h: 74 5F 44 65 Y3 74 72 6F 79 00 00 00 49 &l &1 &7 ; t_DEStrD?...Imag'Eﬂ

QO02e410h: 65 4C 69 Y3 74 S5F 43 72 65 61 Y4 65 00 00 OO0 OO0 @ eList Create....
000Zcd20h: | 6aC A 33 32 2E 64 6C 62|00 OO0 OO OO0 00 Q0 00 00 ;|le3z2.dll.p......
000Z2cd30h: |00 OO0 42 54 453 6F 70 V9|00 00 OO0 00 00 00 00 00 ;.. .LZCopv¥.fb.oe....
QO002c440h: 00 00 00 OO0 00 00 00 a0 00 00 00 00 a0 ad a0 o0 @ oo . o e s e e nn
000Z2cd50h: 00 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 .. e e e nnnnnsns
000Zcd60h: 00 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 oo e e e nnnnnsns
QO0Ec470h: 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 oo ernnnnnns
000Zcd80h: 00 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 oo e e e nnnnnsns
QO0022490h: 00 00 00 OO0 00 00 00 a0 00 00 00 00 00 a0 a0 00 2 ... e vennnnns
000Zcdalh: 00 OO0 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 2 .. e e e nnnnnsns
000Zcdb0h: 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 oo e e e nnnnsns
QO0ZcdcOh: 00 00 00 OO0 00 00 00 a0 00 00 00 00 00 a0 a0 00 2 ... e v e v nnnns
000Zcdd0h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2 L. e e e nnnnsns
000Zcdelh: 00 OO0 00 OO0 OO0 00 00 00 00 00 00 00 00 00 00 00 2 .. e e e nnnnnsns

OOQECcdfih: 00 00 00 OO0 00 00 00 a0 00 00 00 00 00 00 00 00 2 oo e esnnnnnns
QO0Z2c5000h;y 00 00 00 OO0 00 00 00 00 00 00 00 00 30 DS 02 00 7 . eeennns ad. .

000<c510h: B4 DO 02 00 00 00 OO0 OO0 00 00 00 00 00 00 00 0o ;2 "B e eeeeen e
0002zS20h: 06 D7 02 OO0 24 D1 02 00 00 OO0 00 OO0 0O 00 00 00 ; .=..8H..........

63

Now we need to calculate the RVAs of these (see appendix):

RVA = RawOffset - RawOffsetOfSection + VirtualOffsetOfSection + ImageBase

RVA of DLL name = 2C420 - 2AC00 + 2D000 = 2E820h

(20 E8 02 00 in reverse)

RVA of function name = 2C430 - 2AC00 + 2D000 = 2E830h (30 E8 02 00 in reverse)

The first one can go into the Namel field of our new IID but the second must go into an
Image_Thunk_Data structure, the RVA of which we can then put into the FirstThunk field
(and OriginalFirstThunk) of our new IID. We will put the Image_Thunk Data structure
below the function name string at offset 2C440 and calculate the RVA which we will put in

FirstThunk:

RVA of Image_Thunk_Data = 2C440 - 2ACO0 + 2D0O00 = 2E840

reverse)

If we fill in the data in the hexeditor we see this:

IR A e T R

(40 E8 02 00 in

000Z2c4d420h:
000Z2c430h:
000Zc440h:
000Zc4d450h:
000Zc460h:
0002 c470h:
0002 cd50h:
0002 c490h:
0002 cda0h:
0002 cd4b0h:
0o02cdcOh:
000Zc4dd0h:
0o02cdelh:
000Zc4f0h:
0002 c500h:
000Zc510h:
000Z2cz520h:
000Zc530h:
000Zc540h:
000Zc550h:
000Zc560h:
000Zc570h:
0002Zc580h:
000Zc590h:
0002 z5a0h:
0002 cS5kh0h:
0o002e5c0h:

6C Th 33 32 ZE
00 oo 4c 54 435
|SD Ed 0z DDlDD

64
aF
oo

oa
oo
oo
oo
oo
oa
oo
oo
oa
oo
oo
oo
B4
06
oo
oo
oa
ad
4E
oo
oo

oa
oo
oo
oo
oo
oa
oo
oo
oa
oo
oo
oo
oo
D7
oo
oo
oa
b1
DA
oo
oo

[a]n]
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oz
oz
oo
oo
oo
oz
oz
oo
a0

[a]n]
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
24
a0
oo
oo
oo
FO
30
a0

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
D1
o7
oo
oo
oo
o1
DE
a0

oz
oz

0z
0z

18
7o
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo

oo
oo
oo

a0

18
73
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
oo
ac
gh
oo
oo
oo
04
Fa

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
a0
oo
oo
oo
o1
o7
oo
oo
oo
Da
Ea

o0 Fo

a0

oo

oo

o0

oojoo oo

oo

oo | oo

oo

oofzo

ao|

40

ES

0z

oojao oo

oo

a0

oo

Finally save changes,

PEBrowse:

oo oo oo

run the app

oo
a0

oo
a0

a0
oo

a0
oo

a0 ag
oo oo

a0
oo ao

-

lz3z.dll........
LW LEZCOPY . s e e e
OB v e i e e nnnenns
............ od. .
2T
ST - 5 P,
CI -
........ g=..DH..
............ =
10
OIS 5 (R
0F..00......
........ ge. . ad. .
............ &.
R, .o i e e et

to test and re-examine the imported functions in

64

~] BASECALC.EXE - PEBrowse Professional
File Edit Wiew Tools ‘Window Help

add a5 B SEA S &E M b

[55 00S Header T

i

[File Header E structure for Import = |E|&

Table $& (comctl3Z.dll): Py
TwportLookupTablePVWA: Ox00000000

Eﬁ CODE TimeDateStanp: 0x00000000

ForwarderChain: Ox0000ooo0
NameRWA: 0x000ZE6FE (comctl3E._d411)
ThunkTahleRVA: Ox000zZD4FC

Thunk0l = OxO000ZE704 (0, Imagelist GetDraglmage)
Thunk0z = Ox000ZE7L1E (0, Imagelist DragShowNolock)
Thunk03 = Ox000ZE73A (0, Imagelist SetDragCursorImage)
ThunkO04 = Ox000ZE7SA (0, Imagelist Draglowve)

Thunk05 = 0x000ZE770 (0, Imagelist Dragleawe)

Thunk0e = Ox000ZE7S86 (0, Imagelist DragEnter)

= é |m|:u;|rt$ Thunk0? = 0x000zZEY3C (0, Imagelist EndDradg)
Thunk0s = Ox000ZEVED (0, Imagelist BeginDrag)
+ £} ADVAPI32DLL Thunk09 = 0x0002E706 (0, Imagelist SetBkColor)
+-} COMCTL32.DLL ThunklO = 0x000ZE7DE (0, Imagelist Replacelcon)
+ g GOIE2.0LL Thunkll = 0xO000ZE7F& (0, Imagelist Destroy)
+ Thurnklz = 0x000ZES804 (0, Imagelist Create)

Table #3 (1z32.d11):
InportLoockupTableRWA: Ox000ZES40
Thunk0l: Ox000ZES830 (0, LECopi)

* iy TimeDateStanpy: 0x00000000
+ E; USERZ2DLL ForwarderChain: Ox0000o0o0

+ -} Resources HameRVA: 0x000ZESZ0 (lz32.dll)
[5 File Image ThunkTableRVA: 0x000ZES40

Thunk0dl = O0x000Z2ES830 (0, LECopi)
Table #10: (Directory Delimiter)
TwportLoockupTablePBWA: Oxz00000000

TimeDateStanp: Ox00000000

ForwarderChain : Ozx00000000

NawmeRWA - OxOoaooaoao

ThunkTabhleRWA - OxOooooaao o
£ >

In order to call your new function, you would use the following code:

CALL DWORD PTR [XXXXXXXX] where XXXXXXXX = RVA of Image_Thunk_Data +
ImageBase.

In our example above for LZCopy, XXXXXXXX = 2E840 + 400000 = 42E840 so we would
write:

CALL DWORD PTR [0042E840]

FINAL NOTE: even if we had added a function used by a DLL which was already in use eg
kernel32.dll, we would still need to create a new IID for it to enable us to create a new IAT
at a convenient location as above.

Just as an addendum to this page, here are a few shots of the automated tools mentioned
above:

65

B Code Snippet Creator, version 1.05 build 2 by Iczelion

Mo Project

File Edit PE Info BE{EN Help

Mew Target

m

Options

| Est |

Of note, SnippetCreator adds jump-thunk stubs of new imports to your code whereas with

the other utilities you have to do this manually.

FEF 11D King v2.01 by SantMat/RET/ID

[IDKing v2.01 by SantMat

Pick a file

W W wW.reteam.orng

| v Backup

Dll[s] Name

Function[s] Name[case sensitive]

| |

| About

66

w. CaveWriter - dzzie

B

Pe File : IDZ"-.PrDiECtS'\CEVEWFitE['\E:-:al'ﬂp|E"-.I‘l'|l:ll:|l:|El:|.E:-:E

Axailable Api
- KERMELZ2 I
S wir3201.dl
& 5 l| ConfimPID

GUICanfirmPID = CALL [404010]

ImageBase: 400000 EntywPt: 4001110 O ffset Calculatar |
call GUIConfirmnPID]
push eax

call 401084

jmp 40710CE

00405E7E 50 PUSH Efo

O0405E77 ES OE B2 FF FF CaLL 04010840
00405E7C ES 40 B2 FF FF JMF D4010CER
00405EE1 0000 ADD BYTE PTR [E&=]AL

00405E70 FF 1510 404000 CALL DWORD PTR DS:[0404010h) j

FF1510 AD400050ESOE B2FFFFE3 4D B2 FF FF

4

Embed (=0 44 |4|:|5.3?|:| Sect; text FileOffzet: BEF0
Azm Bute Count; 17 Azzemble Embed |

67

68

15. Introduction to
Packers

In this section we will examine the effect of a simple packer on our example app and cover
2 main ways of patching a packed executable - either by unpacking first or by inline-
patching. We will use UPX1.25 since this is really an executable compressor and doesn't
use any advanced protection mechanisms. In the words of Marcus & Laszlo (the authors of
UPX):

"We will *NOT* add any sort of protection and/or encryption. This only gives people a false
feeling of security because by definition all protectors/compressors can be broken. And
don't trust any advertisment of authors of other executable compressors about this topic -
just do a websearch on ‘unpackers’..."

First we scan our app with PEID:

€ PED v0.93

File: | C:\Pragram FilesiHex Taols|\BASECALC, EXE L]
Entrypoint: | Q002ADE4 EP Section: | CODE _EJ
File Offset: |0D0ZALE4 First Bytes: |55,8B,EC,83 | > |
Linker Info: | 2,25 Subsystem: | Win3z GUI ﬂ

Barland Delphi 2.0
rulki Scan Task Yiewer Cptions Abouk | Exit |

[+ Stay on kop M ﬂ

Next we pack our app with upx. This is a commandline utility so we open a DOS box where
our app is and type "upx basecalc.exe":

AWINDOWSAsystem32emd. exe

C-“Program Files“Hex Tools>upx basecalc.exe

File si=ze
229888 —> 22672 48.31x win32 pe hasecalc.exe
Packed 1 file.

C-“Program Files“Hex Tools>_

Now we notice file size down from 225Kb to 91 Kb and in PEID we see this:

5 PED v0.93

File: | Ci\Program Files\Hex Toolstbasecalc, exe

File Offset: |00015630 First Bytes: |60,BE,00,40

Entrypoint: | QO03F230 EP Section: [P ﬂ
B
B

Linker Info: | z.25 Subsystem: | Win32 GUI

JP¥ 0,89.6- 1,02) 1.05 - 1,24 (Delphi) stub - = Markus & Laszlo
Mulki Scan | Task Wiewer | Options | Abouk | Exik |

[v Stay on kop ﬂ ﬂ

PEBrowse Pro shows that there are now only 3 sections called UPX0, UPX1 and .rsrc The
resource section now contains the import directory but for each DLL there are only one or
two imported functions - the others have disappeared:

70

-] basecalc.exe -

jFI|E Edit Miew Toaols ‘Window Help

] ﬁ H T @k HEA S &E O g

PEBrowse Professional - [Structure for Import]

Resource

(3 COMCTL32DLL

Takhle #1 (EEDNELZ2Z. DLL):

InportLoockupTableRWA: Ox00000000
TimeDateStanp: Ox00000000
ForwarderChain: Ox0000oao0
Name BTL: Ox00041144 (EERNELZEZ.DLL)
ThunkTableRWA: Ox0004110C

ThunkOl = 0x0004118C (0, LoadLibrarwyd)

ThunkOZ = 0x00041134 (0, GetProcliddress)

Thunk03 = 0x000411A2
Table #Z (advapizdZ.dll):

ThunkOl = O0x000411ES

ThunkOl = 0x000411E0
Table #& (user3Z.dll):

(0, ExitProcess)

InportLookupTableRWA: Ox00000000
- E}Impmm TimeDateltamp: Ox00oooaoo
ForwarderChain: Ox00000000

< g.ﬁ.DVﬁPBz DLL NameRVA: 0x00041151 {adwapi3Z.dll)
RegFlushkey ThunkTahleBVi: Dx0004111C

10, BegFlushFey)

[55 ImageList_Create Table #2 (comctl3Z.d11):
= E} GDI22.0LL InportLoockupTableRWA: 0x00000000
T G avelll TimeDateltamp: Ox0ooooaao
; ForwarderChain: Ox000oo0an
i gHNELEE'DLL HameRVA: 0x0004115E (comeotl3Z. dll)
22 ExitProcess ThumnkTakleRVA: 0x00041124
GetProcaddress ThunkOl = 0x000411C6 (0, Imagelist Create)
LoadLibrand, Takble #4 (gdi3Z._dll):
- g DLE&UTSE DLL InportLookupTableBWA: 0x00000000
ﬁﬁ arantClear TimeDateStanp: Ox00000000
- E} USER32 DLL ForwarderChain: Ox00000000
T GetDl MName PBWA: Ox0004116B (gdizz.dll)
ThunkTabhleRWA: Ox0004112C
+£3 Resources Thunk0l = 0z000411D8 {0, Savell)
Ty . L
{22 File Image Table #5 {oleaut3Z.d1ll):
TwportLockupTableBWA: Ox00000000
TimeDateStanp: Ox00000000
ForwarderChain: Ox000000a0
MName PWA: O0x00041175 (oleaut3Z._dll)
ThunkTabhleBWA: Ox00041134

(0, VariantClear)

ImportLockupTableBWA: Ox00000000
TimeDateStanp: Ox00000000
ForwarderChain: Ox00ooooooo
MName BWA: 0x0004118F {(user3Z.dll)

Note the .rsrc section has retained its original name even though the others have changed.
Interestingly this dates back to a bug in the LoadTypeLibEx function in oleaut32.dll in
Win95 in which the string "rsrc" was used to find and load the resource section. This
created an error if the section was renamed. Although this bug has been fixed it seems
most packers do not rename the rsrc section for compatibility reasons.

By opening the app in LordPE editor and pressing the compare button we can open an
original copy of our app and see the changes made to the headers:

Compare PE files] [x
Itern To Compare bazecalc.exe Copy of BASEC... | =
x filegize 1EA00 38200

s/e_lfanew 000001 0o Q00001 0o

» FileH eader:

" Machine 0140 0140

x Mumber0fSections oo3 Qoog

s/TimeDateStamp 26425E19 20425E19

¢F‘DinterTDSymelTable 00o0oa000 Q0000000

s/NumI:ueerS_l,lmI:u:uIs 00000000 Q0000000

JSizeElpotiu:unalHeader noeEnd QoED

X Characteristics g16F 818E

[T I8 PR a7
Compare PE files] [*]
[tern To Compare basecalc.exe Copy of BASEC... ||~

¢ MinarLinkeerzion 19 19

x Size0fCode 00015000 Q0024000

x Size0flnitializedD ata 00002000 QooooEQD

x Size0fUninitializedD ata 00023000 Q0000000

x Address0fEntyPoint 0003F 230 noo2aneEd

x BazelfCode 00024000 0001 0o

x Baze0fData 00040000 Q002B 000

s/lmageBase 00400000 Q0400000

s/ Sectiondlignment 00001 000 Q0001 000

¢ Filedlignment 00000200 Q0000200

" I L S PR MO a B S N T nnni Ininink! ot
Compare PE files] £
Item To Compare basecalc.exe Copy of BASEC... ||~
* DataDirectonies:

¢ ExportT able-RiiA, 00000000 Q0000000

s/E:-:pu:urtTaI:uIe-Size 00000000 Q0000000

x ImportT able-Riid 00041080 Q0020000

x ImportT able-Size 00000173 Q0001 81E

x Resource-Ryva 00040000 Q0034000

x Rezource-Size Qo001 0s0 Q0003EQD

¢ Exception-Aiia 00000000 Q0000000
¢Exceptiun-5ize Qo0oo0oo Qo00o0oo

J Securty-FWa, Q0000000 Q0000000

" I [N PRTH PR s [inininininininl [inininininininl X

When we open our app in Olly we get a message that the executable is likely packed. Just
click OK and we land at the entrypoint:

CPL) - main thread, module BASECALC

A4S BT FLUSHAD

[5] 1| . BE B8RAa4z00 HMal ESI, BASECALE. B84 2A000

HE43F235| o SO0EBE @@yEFOFF|LEA EDI,DWORD PTR DS: CESI+FFFOVEEE]
HE43F22C) o CFEY D4B38zZEE| MOU DWORD PTR DS: CEDI+2BZ041, 83248220
HR43F246(. 57 FUSH EDI

BE43F247| . 83C0 FF OF EEF,FFFFFFFF

BE43F24A] . E JHMF SHORT EASECALC. BE42FZ2E5A

HE43F 240 L]

BE43F240
HE43F24E
HE43F24F L] HaF

ao4srase| > & HOU AL, BVTE PTR DS: [ESI)

UPX has compressed our app and appended the code with a stub containing the
decompression algorithm. The entrypoint of the app has been changed to the start of the
stub and after the stub has done its job, execution jumps to the original entrypoint to start
our now unpacked program.

The rationale for dealing with this is to let the stub decompress our app in memory and
then dump the memory region to a file to get an unpacked copy of the app. However the
app will not run straight away because the dumped file will have its sections aligned to
memory page boundaries rather than file alignment values, the entrypoint will still point to
the decompression stub and the Import directory is clearly also wrong and will need fixing.

Note at our entrypoint in Olly the first instruction we see is PUSHAD. This stands for PUSH
All Double and instructs the CPU to store the contents of all the 32bit (DWORD) registers
on the stack, starting with EAX and ending with EDI. Following this the stub does its job
and then ends with a POPAD instruction before jumping to the OEP. POPAD copies the
contents of the registers back from the stack. This means the stub will have restored
everything back the way it was and exited without trace before running the app. Since this
method is ideal in this situation it is common to other simple packers eg ASPack.

From the time of the first PUSHAD instuction, the contents of the stack at that level must
remain untouched until accessed by the final POPAD. If we put a Hardware breakpoint on
the first 4 bytes of the stack at the time of the PUSHAD Olly will break when the same 4
bytes are accessed at the POPAD instruction and we will be sitting right in front of our JMP
to OEP.

First we must execute the PUSHAD instruction so press F7 to single step. Next we will
place our breakpoint. The ESP (Stack Pointer) register always contains the location of the
top of the stack so . Rightclick on ESP and select follow in dump - this puts the stack in the
hexdump window:

CPL) - main thread, module BASECALC

AEd 3F 2 =] FUZHRD Regizters [FPL
BE4SFE . BE GEAR4ZAE |MOU ESI, BASECALC. AR42A@EE S Eng TR
GE43FZ26| . S0EE BE7EFOFF|LER EOL,DWORD FTR DS: [ESI+FFFO7EEE] EFv mRisrFFRa
GE43FZ3C| . CraF D4B36285) HOU DWORD PTR DS: CEDI+ZE3041,3354835C ED TCOBEESS ntdlL. K (FastSy
BE43FZ46| . 57 FISH EDI = :
@843F247| . 93CD FF OF_EEF,FFFFFFFFE) T
GE43F=Z4A(. E JHP SHORT BRASECALC.BE4SF25A = I '
rhE A Ecibireerrr] ool
AR SF 2AE EDI FC91Evs Decrement
BE4SFE4F 28 EIP @843F23 2.0
GE43FZEA AL,EYTE FTR OS:[ESII C @ ES mEs
BE43F 252 . 45 ESI F 1 CS @@l Set t|:|1
GE43F255(. EYTE FTR DS:[EDIT,AL RB St poe
BE43F2EE| . 47 EDI Modif
B4 3F Z5E EE, EEX C o i
' S @ FI 8as .
ee43F253| . SHORT ERSECALC.BE4SF261 T & &t oos Copy selection t
PBFogr ESq, g0 TR DSHIESH D @ Copy all regist
i u] all regiscer
GE43FZEF| . 110E AOC EE, EEX D7z Lesear itd :
BE43FZE1| 72 ED JE SHORT EASECALC.BE43F250 EFL Q@8@a24
BE4SFZEE| . ES Aloooaaa | HOU EAX, 1 STE empty -
GE43FZES| > BIDE AOD EE, EEX e g
BR43F2en| .v7E 87 JNZ, SHORT, BRSECALC, BRd3Fers 372 empre @ | olowin Stack

Now highlight the first DWORD of the stack, rightclick and select breakpoint, hardware on
access, DWORD:

73

[& CPU - main thread, module BASECALC

{=15] FUZHRD M | Registers (FPL
Bo43Fzil| . BE @OAB4ZE@ | MOU ESI,BASECALC. B942A080 e
BE45F236| | SDEE GEFEFOFF|LEA EDI,DWORD PTR DS:LESI+FFFO7EEE] S il
BR43FZSC| . CyG? D4B3020m| HOU DUORD PTR DS:[EDI+283041, 83848560 Shhoo i
BA43F 24E PUSH_EOT B e
BodsFz47| | &sco FF OF_EEF, FEFFFFFF Eor pe
Ba43F24A| vEB BE JMP SHORT BASECALL. BB43FZSA e

ga43r24C) 24 ESI FFFFFFFF

BE43F 240 L]
BE43F 24E L] EDI 7PCo18738

BE43F 24F Lt EIF B843F238
B4 3F 258
BiE43F 252
BE43F 253
BE43F2EE] .
SSQ%F%ES i Breakpoint Memary, on access
BE43F 25A
BR4SFsEn Search For

@a43F2cFE . Fallow DWORD in Disassembler

=

Merory, on write

oOO—HWmrID T
0

M

o

=

=1

0w

m

LastErr

[}
o
=
=
[}
T o
— M Tradadadad moA

BER43F 261 Hardh ar ac Byte o
BE4SF2E3| . Fallaw DWORD in Durmp — LIME
BE43FZeE| > B10B Hardware, on write » Whord
eE43F2ea| . G0 ko r : . 5
AE4SF2EC| . Hardware, on execution &
BA43F2EE| . T BT =]
BE43F271 . W Hex 4 STE emptuy]
SS:EF%?E 5 Texk ¥ g;g emp:v S-S
BER43F27F| . F) EMpLY K.
LS o Shart b4 — | FsT eEee Conc
BR4 5P : Lang [FCW B27F Prec
ARADC20R —
P, | Floak L4 }
Disassemble
Special r
Address ercumpe, Appeatrance 4 RASCIT # | Hddress | Ualue
4 4F 6D 81 Plloe—— O 7YF|OmiiiS-21 - FCE!
g4 8 FF 12 BB HB EE lﬂ 81 FF FF FF FF | BETEE . i+ HE12FFCE| PL9.
FS 299 22 YC| 52 60 21 VC BA BB B8 BB B0 B8 BA B8 |(%RIS1HEmibil. .. eeas BE12ZFFCC| FFFF
EE1ZFFF4| BA BB B8 BA 26 F2 43 B8 A8 B8 B0 &8 et = [Ciatac et BE12ZFFDRE| FFFI
AR12FFN4| ARG

Next run the app by pressing F9 and Olly will break after the PUSHAD directly before the
JMP to the OEP. The OEP shown here has the ImageBase 400000h added onto it so to
make it into an RVA we subtract it which leaves 0002ADB4h:

[& CPU - main thread, module BASECALC

HE4ZFEYE] . S3CE a4 AOD EE®, 4

HA43F3TE ~EB E1 JHMP SHDRT BASECALC. BE43F3&1
HE43F 2320 } FF96 14818488| CALL OWORD PTR D5:[ESI+481141]
HEA42F 205 FOFPAD

E[5E AE9 Z28EAFEFF JMP BRSECALC. B@42A0E4

BE4SF o0 A4F 34308 OO0 BASECALLC.B843F2A4

HE423F 328 ACF343a8 BASECALC. B&a423F3AC

HE43F 394 O4C342E08 BASECALC. Ba42C304

HER43F 392 s]5] 5]5]

HEA43F 399
HE43F39A
DB43F 290
HE43F390)5} OB @@ O E P
HE43F39E s]5] OB @&

B4 3F39F 5]5] OB @&

HE43F2AA 55} OB @&

BEA43F2A1 5]5] OB @@

padsF3az| oo DE 88

If you want to cheat there is a quick way which always works for upx. Simply scroll to the
end of the code in the CPU window in Olly and just before all the zero padding starts you
will see the POPAD instruction shown above.

NOTE: other packers which use the same simple PUSHAD/POPAD mechanism may jump to
the OEP by using a PUSH instruction to put the value of the OEP onto the top of the stack
followed by a RET instruction. The CPU will think it is returning from a function call and
conventionally the return address is left on top of the stack.

Next we single step once with F7 so we are at the OEP and dump the app using the
OllyDump plugin. Just click on plugins, OllyDump and select dump debugged process. In

74

the next box we will deselect fix raw size and rebuild imports in order to illustrate some
points of interest:

OllyDump - BASECALC. EXE X

Start Address: 400000 Size: 42000
Eriry Point; | 3F230 -» Modify: [24DB4 Get EIP as OEF | Cancel |

Eaze of Code; 24000 Baze of Data; (40000

Fix Raw Size & Offzet of Dump Image

Seu:‘li;n | Wirtual Size | Wirtual Offset | Raw Size | R aw Offzet | Charactaristics |
LF=0 00023000 0oaooaa 0o000aaa 0aaoo4aa EQ000aS0
LIF=1 00071 E000 0o02a000 00015400 | EQ000040
002000 00040000 00001200 005200 CO000a40

Deselact
these

Rebuild [rmpaort
* Methodl : Search JMPAPI] | CALL[AP] in memany image
(" Method? : Search DLL & &P name sting in dumped file

Note that OllyDump has already worked out the base address and size of image (which
you could see by looking in the memory map window) and has offered to correct the
entrypoint for us (although we could do this manually in the hexeditor). Press the DUMP
button and save the file (eg as basecalc_dmp.exe). Leave Olly running for now.

Unfortunately we see something is wrong because our file has lost its icon and if we try to
run it we get an error:

Flbasecal:_dmp.exe 264 KB Application 18/05/2005 12:03

C:\WProgram Files\Hex Tools\basecalc dmp.exe

@ Z:\Program FilesiHex Toolsibasecalc_dmp.exe

Only part of a ReadProcessMemary ar WriteProcessMemory request was completed.

This is because of the alignment issues mentioned earlier - the filesize has also increased
as a result. Open the app in LordPE and look at the sections. The raw offset and raw size
values are wrong. We will have to make the Raw values equal the Virtual values for each
section for the app to work. Rightclick the UPXO section and select edit header:

75

Edit SectionHeader]

Section Header
K

ok |
M ame; IR0

Wirtualdddress: Im Cancel
YirtualSize: Im

R awffset: (TR 00|

RawSize: Im

Flags: | E00000S0 .. |

Now make RawOffset equal VirtualAddress and RawSize equal VirtualSize. Repeat for the
other sections then click save and exit (this is what the "fix raw size" checkbox in
OllyDump does automatically). Now the icon has returned and we get a different error
when we try to run it: "The application failed to initialize properly”. This is because the
imports still need rebuilding.

It is possible to do this manually using a process similar to adding imports which we
discussed in a previous section. However this can be very time-consuming if there are a lot
of imported functions and the method depends on how damaged the import data is. Here
we will use ImpREC 1.6F by MackT to do this automatically. ImMpREC needs to attach to a
running process and also needs the packed file to find imports. Start up ImpREC and follow
these steps:

. select basecalc.exe in the box at the top (it should still be running in Olly.)
. Next enter our OEP (2ADB4) in the appropriate box

. Press the "IAT AutoSearch" button and click OK on the messagebox

. Press the "Get Imports™ button

. Press "Show Invalid” - in this case there are none

. Press "Fix Dump" and select basecalc_dmp.exe in the open dialogbox

. Exit.

NOo b~ WDN PR

76

-# Import REConstructor 1.6 FINAL (C) 2001-2003 MackT/uCF

Attach to an Active Process

| c:hprogram fileshhes toolshbagzecalc. exe (D0000F40) L‘l) ﬂ Fick DLL

Imported Functions Found

Shaw [rvalid |

Show Suzpect

Auta Trace

TN

Clear Imports
Laog
Module loaded: o windowshaystem32hole 32, i ”
Module loaded: o windows'system32hustheme. dil 3
Module loaded: o windows\aystem32hspntpfoe. dil Clear Log
Module loaded: o windows'system32hwverzion. dll
Getting associated modules done. =
A L'
IAT Infos needed @ New Import Infos (IID+A5CI+LOADER) Bl e
DEF | DOCEFes] IAT AutoSearch R, ||:||:||:||:||:||:||:||:| B ||:||:||:||:||:||:||:||:|
About
Riid, | 00000000 : Size |00007000 [el e e e
E it ! : |
Load Tree| Save Tree| Get Imports |® Fix Dump @
ImMpREC will save a fixed copy of our dumped file appended with " " so run

basecalc_dmp_.exe to test it. If we examine this file we will see that size has increased
and there is an extra section called "mackt" - this is where ImpREC puts the new import
data:

P a g ah Dk &

[55 DOS Header

ﬁ File Header

+-£2 Imports

+-{=} Resources

Since UPX is purely a compressor, it has simply taken the existing import data and stored
it in the resource section without encrypting or damaging it. This is why ImpREC finds all
valid imports without resorting to tracing or rebuilding - it has taken the import directory
from the packed executable in memory and transferred it to the new section in the
unpacked executable.

77

Scanning with PEID now reveals:

€ PEID v0.93

File: | C:\Program Files\Hex Tools\BASECALC_DMP_EXE
Entrypoint: | Q002ADE4 EP Section: | UPx1 ﬂ
File Offset: | 000ZADE4 First Bytes: |55,88,EC,83 | = |
Linker Info: | 2,25 Subsystem: | Wins2 GUI ﬂ

Borland Delphi 2.0

Multi Scan Task Wiewer Options | Abouk | Exik |
[Stay on kop 20| |1=2

This illustrates the steps necessary to unpack an executable packed with a simple
compressor. More advanced packers add various protection schemes to this eg
antidebugging and anti-tampering tricks, encryption of code and IAT, stolen bytes, API
redirection, etc. which are beyond the scope of this tutorial.

If it is necessary to patch a packed executable, it may be possible to avoid unpacking it
first by using a technique called "inline-patching”. This involves patching the code at
runtime in memory after the decompression stub has done its work and then finally
jumping to the OEP to run the app. In other words we wait until the app is unpacked in
memory, jump to patching code which we have injected, then finally jump back to the
OEP.

To illustrate this technique we will inject code into the packed executable to pop up a
messagebox and let us know when the app is unpacked in memory. Clicking OK will then
jump to the OEP and the app will run normally.

The first task is to find some free space for our code so open the packed app in the
hexeditor and look for a suitable "cave". Free space at the end of a section is better as it is
less likely to be used by the packer and is extensible by enlarging the section if necessary
(see adding code to a PE file.) You can see how efficient UPX is - there is hardly any free space
- but a small cave exists here. Now add the text "Unpacked..." and "Now back to OEP" in
the ASCII column of the hexeditor as shown:

00016410h: CC CC CC €8 77 77 77 77 77 77 17 77 77 7 97 77 : IIIEwwwwwwwwwwww
O001642z0h: 77 77 77 77 00 OO0 00 OO0 00 OO0 OO0 OO0 OO0 OO0 OO0 OO0 7 WWWW. v nneee...
O0016430h: 55 6E 70 61 63 6B 65 64 2E 2ZE 2ZE OO0 00 OO0 00 00 ; Unpacked........
00016440h: 4E 6F 77 20 62 61 63 6B 20 74 6F 20 4F 45 oo : Now back to OEf.
O0016450h: OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 7 vuueeernnneeenns
O0016460h: OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 7 v ueeernnneeenns
O0016470h: OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 7 vuueeeennneeenns
O0016480h: OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 7 vuueeernnnneenns
00016490hk: OO0 OO0 00 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 2 vuuerevnnnneenns
O00164a0h: OO0 OO0 OO0 OO0 D4 53 03 00 28 00 00 OO0 20 00 00 00 708.. (... ...
O00164b0h: 40 00 OO0 OO0 01 OO0 01 OO0 00 OO0 00 OO0 00 01 00 00 7 Bueeernnneeenn.
000164c0h: OO0 OO0 OO0 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00 00 2 vuverrrnnnneesns
O00164d0h: OO0 O0 OO0 OO FF FF FF OO0 00 OO0 00 00 7F FF FF FE ;%%..... Oififh
ANNi164=Nk: 7F FF FF FR AN 1 8% N6 GF 09 93 76 AL 00 A3 MN& = M#6h b nEwraRf.

78

This will mark our spot for the patch in Olly without having to worry about calculating VAs.
Save changes and open the app in Olly. Rightclick in the hex window and select search for
binary string. Now enter "Unpacked" and note the VA of the 2 strings. In the CPU window,
rightclick and select Goto expression. Enter the address of the first string and you will see
the 2 strings in hexadecimal form. Olly has not analysed this properly so it displays
nonsense code next to it. Highlight the next free row underneath and press the spacebar
to assemble the following instructions:

PUSH
PUSH
PUSH
PUSH
CALL
JMP 42ADB4

440C30
440C40

BE44EC38
BE44EC31
Ba446Ca:2
BE44EC234
BE44E037
Ba44[C2e
BE44EC33
BE44EC2A
BE44acz0
BE44EC23F
Ba446042
BE44EC44
BE44EC4 7
Ba44EAC4H
BE44EC4E
GBE44EC4E
Ba44ACHF
BE44ECE1
BE44ECE2
BA44ECES
BE44ECEF
BE44ECE2

[address of
[address of

FUSH EEFP

OUTS D, BYTE PTR ES:[EDI]
J0 SHORT basecalc. 8448095
ARFL WORD FPTR DS:[EBX+:S51,BP
FREFIX FS:

PREFIX CS:

FREFIx CS:

ADD BYTE PTR CS:[EAX], AL

ADD BYTE PTR DS: [EAX], AL

ADD BYTE PTR DS:[ESI+&F],CL

JA SHORT basecalc.B88448C654
EOUMD _ESP, GWORD PTR DS: [ECK+E2]
IMUL ESP,OWORD PTR DS: [EAKI, 74
OuUTS O, OWORD PTR ES:[EDI]
AHMD BYTE PTR DS:[EDI+451,CL
FUSH ERX

ROD EYTE FTR DS:LCEAX],AL
ADD BYTE PTR DS: [ERX], AL

BE44E6CER
BE44ECED
BE44ECEF
Ba4408CE51
BE44ECE62
BE44ECE5
BE44E0E7
BE44ECE63

v Fill with MOF

's .-’-'-.sseml:ule_r | Cancel |
ki

first
second

BE44BACEE| O
83448560 |

s ——
ADD BYTE PTR D:CEAX].AL

0
string]
string]

0

MessageBoxA

Make a note of the address of our first PUSH instruction - 440C4E. Our code should look

like this:

[E[EEETaTa=Te]
AE44RACE]
BE44aC52
BEd4aC54
BE44EC2Y
BE44RC38
BE44aC59
BE440C03H
BE44aC30
BE440C3F
BE44aC42
B4 4EC 44
BE44RC4 T
BE44EC4H7
HE44AC4E
AE44ACHE
BER44ACEE| &8 SEEC44AR
BER44ACEE| £8 4EEC44ER
BE446CE5H S0 @@
BER44ACEC| ES S9FS93F7
BE446C51 | —-ES 4EALFEFF
BE44ECES | BEEE
oeddoces| pege

FUSH EEF

auTs OX,BYTE PTR ES:[EDI]
JO0 SHORT basecalc.B8844B6C95
ARFL WORD PTR DO5:LCEBX+&551,BF
PREFIX FS:

FREFIX %

PREFIX C5:

AOO BYTE PTR CS5:LCEAXI, AL

AOO BYTE PTR OS5:LCEAXI, AL

AOO BYTE PTR OS:[ESI+&F1,CL

JA SHORT basecalc.@B84460C654
EBOUMD ESF, BWORD PTR DOS: [ECH+E3]
IMUL ESP,OWORD PTR D5: CEARD, 74
OuUTS DX, OWORDO FPTR ES:[EDI]

AHO BYTE PTR OS:[CEDI+451,CL
FUSH &

FUSH basecalc.dbd44bc3a

FUSH basecalc.dbd44bC4a

PUSH &

CALL WUSERZZ.HMessageBoxA

JHMP basecalc. 8@42R0E4

AOO BYTE PTR OS5:LCERXI, AL

ADD BYTE PTR DS:[ERX1, AL

Next rightclick and select copy to executable, selection. In the new window rightclick and

79

select save file etc. If we check in the hexeditor we see our code has been added:

o1 g 1 g §

2 3 4 % 8§ 9 3 b ¢ d
0o0o016420h: 77 77 77 77 00 00 OO0 OO0 00 00 00 00 00 00 00 00 7 W0, @ v e e e e eneea
00016430h: 55 6E 70 61 63 6B 65 64 ZE ZE ZE 00 00O 00O OO0 00 ; Unpacked........
oo016440h: 4E 6F 77 20 62 61 63 6B 20 74 &F Z0 4F 45 50 00 ; Now bhack to OEP.
QO01e450h: 00 g4 00 &8 30 0OC 44 00 63 40 0QC 44 00 6 00 ES ; .j.hO.D.hE.D.j.2&
00016460h: &6 F3 93 77 E9 4 A1 FE FF 00 00 00 00 OO0 00 00 ; te™wéeK;b¥.......
00016470k: 00 OO0 OO0 OO0 OO OO0 OO0 OO0 00 00 00 00 00 00 00 00 2 e e e i e ennennnns
O0016450h: 00 OO0 OO OO0 OO0 OO0 O0 OO0 OO0 00 OO0 00 00 00 00 00 7 e e e e nnnassnnns
O0016490h: 00 OO0 OO OO0 OO0 OO0 00 OO0 OO0 00 OO0 00 00 00 00 00 7 e e e e wnnnssnnnas
0o00leds0hk: OO0 OO OO OO D4 53 03 00 28 00 00 0O 20 0O OO0 OO0 @ L...08..0...

Finally we need to change the JMP at the end of the UPX stub to go to our code. Find it as
shown earlier, doubleclick the JMP instruction to assemble and change the address to
440C4E. Save changes again and run the app to test it:

Unpacked... E]

Mow back ko QEP

Clicking OK resumes BaseCalc.

80

16. Infection of PE Files by
Viruses

This section gives a brief glance at techniques used by viruses to infect PE files. It will be
of interest to see that the methods are exactly the same as those we have discussed
earlier for adding code.

Most 32bit windows viruses infect PE files. They achieve this either by adding their own
headers or updating existing headers in order to add their malicious code to the
executable. Most viruses will update the SizeOflmage value as it is checked by the
NTLoader but some neglect to change SizeOfCode.

Usually PE sections which are executable are not writable but those added by viruses need
to be both since the code and data of the virus exist in the same section. The virus will
therefore alter the Characteristics field of the section header to allow this.

Overwriting viruses are crude since they simply overwrite the code of the host program
rendering it useless, however they are easily detected as the host app stops working.

Header viruses insert themselves between the PE header and the beginning of the first
section. These have to be very small as the space they occupy is limited by the
FileAlignment value (default=512bytes) which dictates where each section will start.
Example Win95/Murky

Prepending viruses attach to the beginning of a PE file so that viral code is executed
before the host app's code. There are 2 modes of action:

1. The virus moves the PE header to the end of the host app and inserts its code into the
space.

2. The virus appends the host app to itself.

These viruses may after execution, clean a copy of the host app, launch it and then
reinfect it.

Appending viruses add their code to the final section. The section header of this section
is patched to reflect the new size of the file (SizeOflmage, VirtualSize and
SizeOfRawData). AddressOfEntryPoint is modified to point to the viral code and the
Characteristics field is modified to be executable and writable. The NumberOfSections field
is not changed. Example Win95/Anxiety

Some viruses of this type avoid modifying the AddressOfEntryPoint field by overwriting the
instructions at the EP with garbage containing a JMP to the start of the viral code. Example
Win95/Marburg

Companion viruses do not modify the host file but create a copy of themselves with the
same name as the host file but with a .com extension. The viral .com copy is therefore

81

executed by windows first, followed by the .exe host file. These viruses use the
FindFirstFileA, FindNextFileA, CopyFileA, and CreateProcessA APl functions. Example
Win95/SPAWN.4096

Cavity viruses split themselves into tiny fragments which are small enough to occupy the
slack-space between sections of the PE file (which are aligned on 512 byte boundaries as
discussed earlier). The VirtualSize fields in the section table are increased to the same size
as the SizeOfRawData values but the overall size of the file remains the same making
these difficult to detect. A tiny piece of viral loader code at the EP "rebuilds” the virus
when executed. Example Win95/CIH

DLL viruses insert their code into a DLL and then patch the RVA of an API function in the
DLLs export table to point to the virus code. This is because there is no
AddressOfEntryPoint to redirect as DLLs always start at a specified DLLEntryPoint. The
Checksum field is usually recalculated and patched back into the DLL as this is checked by
the NTLoader. Example Win95/Lorez

Other techniques used by viruses include appending to multiple sections at the same time
and shifting sections to create large caves for the viral code.

82

17. Conclusion

I hope this tutorial has helped to make clear some of the complexities of PE format,
particularly those relevant to RCE. There are areas which | have skirted over briefly and
others which | have omitted altogether to save time and space. For those of you who may
not have read all of the above referenced texts or who need further information on
specifics, | will summarise the most important.

First on the must-read list are the 2 parts of "An In-Depth Look..." by Pietrek. These
superseded his earlier article "Peering Inside the PE" which is dated and contains
inaccuracies. The articles by O’Leary and Kath do not add significantly to Pietrek's. PE.TXT
by Luevelsmeyer is long and detailed and best used as a reference, and there are certain
details which even he admits unknown. There are sections in several books concerning PE
format eg. Hacker Disassembling Uncovered, Hackproof your software but these are brief
and less detailed than Pietrek's articles. Secrets of Reverse Engineering, however is
different and gives a most excellent overview of the more important concepts of PE format
along with reversing in Windows in general.

Second on the must-read list are the excellent set of tutorials by Iczelion which are
detailed and also oriented around writing routines in ASM to parse and manipulate various
parts of the PE file including the imports.

Third on the list is the Win32 Programmer's Reference (a must for RCE). The WINNT.h or
windows.inc files which contain all of the definitions of the structures outlined in this
tutorial are a useful reference at times.

The next most valuable are the articles published in The CodeBreaker's Journal by Eduardo
Labir (aka Havok). Apart from that listed above there are other titles concerning Asprotect
which are very detailed and should be considered essential reading.

There is also a small collection of articles by Rheingold several of which concentrate on
working with the PE format. Issues 1-4 survive on the internet and can be found here:

http://www.programming journal.com/issue4/
Note there is no root or index page, nor are they indexed by Google.

This knowledge will provide a solid background upon which to understand how executable
packers work and how to defeat them by manual unpacking, inline patching, writing
loaders, etc. There are many good tutorials around concerning these things, especially the
ones | have eluded to above from ARTeam and Ricardo Narvaja. Read everything you can
find, take the time to understand it and finally "work well" as +ORC always said.

83

84

18. Relative Virtual
Addressing Explained

In an executable file or DLL, an RVA is always the address of an item once loaded into
memory, with the base address (ImageBase) of the image file subtracted from it: RVA
= VA — ImageBase hence also: VA = RVA + ImageBase

It's exactly the same thing as file offset but it's relative to a point in virtual address space,
not the beginning of the PE file. E.g. if a PE file loads at 400000h in the virtual address
(VA) space and the program starts execution at the virtual address 401000h, we can say
that the program starts execution at RVA 1000h. An RVA is relative to the starting VA of
the module. The RVA of an item will almost always differ from its position within the file on
disk - the offset. This is a pitfall for newcomers to PE programming. Most of the
addresses in the PE file are RVAs and are meaningful only when the PE file is
loaded into memory by the PE loader.

The term "Virtual Address" is used because Windows creates a distinct virtual address
space for each process, independent of physical memory. For almost all purposes, a virtual
address should be considered just an address. As above, a virtual address is not as
predictable as an RVA, because the loader might not load the image at its preferred base
address.

Why does the PE file format use RVA? It's to help reduce the load of the loader. Since a
module can be relocated anywhere in the virtual address space, it would be hell for the
loader to fix every hardcoded address in the module. In contrast, if all relocatable items in
the file use RVA, there is no need for the loader to fix anything: it simply relocates the
whole module to a new starting VA.

Converting virtual offsets to raw offsets and vice versa (from Rheingold)

Converting raw offsets (the one in a file you see in a HexEditor) to virtual offsets (the one
you see in a debugger) is very useful if you work with the PE header. For this you need to
know some values from the PE header. You need to know the ImageBase, the name of
the section in which your offset lies, . Below you see an example of a PE header from the
beginning of the file (where it is actually a MZ header until offset 80h) until the section
definitions end (offset 23Fh). The example is taken from my notepad.exe.

85

aooaoooo
oaoooo1o
ooogooz0
oooooos0
oaoooo40
aoooooso
ooogooen
QoooooTo
oooooos0
oaoooos0
ooogooad
o0oaooEd
oaooooco
oooaoopo
oooaooED
Qooo0oFo
ooooolo0
oaooo110
ooooolzo
ooooo130
oaooo140
oooaol1s0
oooaole0
Qoooo1yo
oooaol1s0
oaooo1s0
oo0oo1a0
o00ao1E0
oaooo1co
oooaolpo
oo0oaol1Ed
oooaolFo
ooooozo0
oaoo0z10
ooogozzan
ooogoza30

4054
E300
oooo
oooo
OE1F
6973
7420
ehaF
5045
oooo
oo7a
o050
o400
OoED
oooo
oooo
ooa0
ooaoo
oono
oooo
oooo
oooo
oooo
Qooo
QC3E
oooo
ZEa4
o010
ooaoo
ESOD
aooo
ZE7Z
ooa0
oooo
SCOL
oooo

[00a
aooo
oooo
oooo
BAOE
2070
BZa5
6365
oooa
aooo
oooo
oooo
aooo
oooo
1000
Qooo
oooo
aooo
oooo
oooo
aooo
oooo
oooo
Qooo
oooo
oooo
6174
oooo
aooo
oooo
oooa
TITE
oooo
aooo
oooo
oooo

o300
oaoo
oooo
oooo
O0E4
TZaF
2072
ZEOD
4cC01
EQ00
oooo
oooo
oaoo
ooo4
o010
1000
gcoo
oaoo
3cas
oooo
oaoo
oooo
oooo
oaoo
o010
oaoo
6100
oas0
4000
ooa0
oooo
6300
oo7a
4000
oano
oooo

oooo
oooo
oooa
oooa
o9ch
6P
T56E
QDoa
o500
OEO1
oooa
4000
aooo
oooa
oooo
Qooo
oooo
aooo
oooa
oooo
aooo
oooa
oooo
Qooo
oooo
aooo
oooa
oooa
aoco
oooo
oooo
oooo
oooo
o040
oooa
oooo

o400
4000
oooo
ooao
Z1E3
Glal
2089
£400
6591
OEBO1
co1o
oo1o
o400
D509
oooo
Qoo
oo7o
aaoao
oooo
oooo
aaoao
Edaz
oooo
ZE74
o040
aaoao
4cCas
oooo
ZEa/S
oo1o
oooo
ooad
oooo
ZE7vE
oo1o
oooo

ooao
aooo
oo
oo
014c
2063
aEZ0
Qooo
4635
O304
oo
ooao
oooo
o100
1000
Qooo
ooao
aooo
oo
ooao
oooo
ooao
oo
637
ooao
aooo
oo
oo
646l
ooao
ooao
ooaoo
ooao
a5aC
oo
ooaoo

FFFF
aooo
oooo
000
Chal
6laE
444F
Qooo
oooo
oo4o
o010
o010
oooo
oz0o0
o010
Qooo
E453
aooo
oooo
oooo
aooo
4002
oooo
7400
o010
Z0oo
o050
oooo
7361
a0a0
4000
oo
oooo
aF &3
oo
4000

Example 1 - Converting raw offset 7800h to a virtual offset:

iz prograim canho
t bhe run in D03

mode. .. i
FE..L. e.F5....
............. [..
e
Po...@B... .. 0.
....... . 3
e
......... b..A
......... Text
F i B......
data...L F
..... P.ooouooa...
[idata. .
............ F..H@
rsre. .]
B

The ImageBase (DWORD value 34h bytes after the PE header begins, in our case B4h) is
40000h. The Section Table starts F8h bytes after the PE header starts, in our case 178h. It

is this part:

ooooo1vo
ooooo1so
oooool1so
ooooo1ao
ooo0oa1Eo
ooooo1co
ooooolrpo
ooo0ao1ED
oooool1rFo
QoooozZoo
o000z 1o
ooooozZ20
oooooz30

ZEn4g
o010

ZE7E
Qoed

6174
oooo

Tive
Qooo

o010

6100

aoen

6300

oooo

aooo

oooo

aooo

ooao

aooo

ZE7T4
o040

ZERS
o010

ZE7E
o010

6575
oooo

6461
oaoo

B5aC
oaoo

7400

aoso

T4al

oo7o

aFa3

oo

aaoo

oooo

Qoo

oooo

......... Lext

F e B......

data...L P

..... FPovewwnnn..
[idata. .

............ [..0

rsrc.. jul
T

86

The colored values tell us the following values:

D ool Soe [Vaal Offcer | [RESE

et SESC 1000 4000
.data adiZ 2000 1000
Adata DEZ G000 1000
ST G000 000 G000
reloc A9 Doon 1000
The and orange coloured values in the hexeditor output above are not of

interest for the conversion but have other functions (see Section Table page).

We want to convert raw offset 7800h. It seems obvious that this offset lies in the .rsrc
section because it starts at 7000h (Raw Offset) and is 6000h bytes long (Raw Size). Offset
7800h is located 800h bytes after the section starts in the file. Since the sections are
copied to the memory just like they are in the file, this address will be found 800h bytes
after the section starts in memory (7000h; Virtual Offset). The offset we search is at
7800h. This is absolutely not common that the raw offset equals the virtual offset (without
ImageBase). In this case it is only because the sections start at the same offset in
memory and in the file.

The general formula is:

RVA = RawOffset_YouHave - RawOffsetOfSection + VirtualOffsetOfSection +
ImageBase

(ImageBase = DWORD value 34h bytes after the PE header begins)

The conversion from a virtual offset to a raw offset just goes the other way round. The
general formula is:

Raw Offset = RVA _YouHave - |ImageBase - VirtualOffsetOfSection +
RawOffsetOfSection

For 40A000 that is: 40A000-400000-7000+7000 = AOOO

There are also automated tools to perform the above conversions. Pressing the "FLC"
button on the PE Editor of LordPE will allow you to convert an RVA to an offset:

File Location Calculator] @
Addreszes
Do
[bg |

Rifd

Additional Infarmation

1]

Section;

Bytes:

87

Offset Calculator also only allows conversion one-way from RVA to Raw Offset:

® Offset Calculator v1.0 by MrCrimson/wkT199] [X]

[nput data

File |E:'xF'n:-gram FileshHex Toolz \BASECALC EXE
Addrezs Q0424481

Ifo

Section: [CODE File offzet [dec]: 1147121
Data at address: [2pa100cd File affzet [hex]: |23EB1TH

e | Ea |

RVA Calculator allows conversion both ways:

R¥aA Converter
File &bout

%)

Current File

"::HF'ru:ugram FilezhHex Toolzh\BASECALC. EXE

Corvert offset Section

« RvatoFile ¢ File to By M arne Ii
Imagebaze |4|:||:||:||:||:| WOzt Ii
RUA Viiee |
File | R awff

Bytes FawSize Ii
Charac. Ii

88

19. References &
Bibliography

(1) The Portable Executable Format -- Micheal J. O'Leary
(2) The Portable Executable File Format from Top to Bottom -- Randy Kath

(3) Peering Inside the PE: A Tour of the Win32 Portable Executable File Format -- Matt
Pietrek

(4) An In-Depth Look into the Win32 Portable Executable File Format (2 parts)-- Matt
Pietrek

(5) Windows 95 Programming Secrets -- Matt Pietrek

(6) Linkers and Loaders -- John R Levine

(7) Secrets of Reverse Engineering -- Eldad Eilam

(8) PE.TXT -- Bernd Luevelsmeyer

(9) Converting virtual offsets to raw offsets and vice versa -- Rheingold
(10) PE Tutorial -- Iczelion

(11) The Portable Executable File Format -- KGL

(12) PE Notes, Understanding Imports -- yAtEs

(13) Win32 Programmer's Reference

(14) What Goes On Inside Windows 2000: Solving the Mysteries of the Loader -- Russ
Osterlund

(15) Anti Reverse Engineering Uncovered -- Nicolas Brulez, CBJ

(16) Tool Interface Standard (TIS) Formats Specification for Windows
(17) Adding Imports by Hand -- Eduardo Labir (Havok), CBJ

(18) Enhancing functionality of programs by adding extra code -- cOv3rt+
(19) Working Manually with Import Tables -- Ricardo Narvaja

(20) PE File Infection Techniques -- Konstantin Rozinov

(21) All tutorials concerning manual unpacking (especially those from ARTeam, with
special reference to the Beginner Olly series by Shub and Gabri3l.)

89

90

20. Tools Used

Hexeditor (any will do)
PEBrowse Pro http://www.smidgeonsoft.prohosting.com/download/PEBrowse.zip
PEID http://www.secretashell.com/codomain/peid/download.html

LordPE http://mitglied.lycos.de/yoda2k/LordPE/LPE-DLX.ZIP (get DLX-b update

HexToText http://www.buttuglysoftware.com/HexToTextMFC.zip
OllyDbg http://home.t-online.de/home/Ollydbg/odbg110.zip
OllyDump http://ollydbg.win32asmcommunity.net/stuph/g_ollydump221b.zip

WinDbg

http://msdl.microsoft.com/download/symbols/debuggers/dbg_x86_6.4.7.2.exe

ResHacker http://delphi.icm.edu.pl/ftp/tools/ResHack.zip

UPX 1.25 http://upx.sourceforge.net/download/upx125w.zip

ImpREC http://wasm.ru/tools/6/imprec.zip

BaseCalc included in this archive ...and mentioned in the text:

MASM32 http://www.masm32.com/masmdl.htm

Signature Finder http://wasm.ru/baixado.php?mode=tool&id=244
Snippet Creator http://win32assembly.online.fr/files/sc.zip

First_Thunk Rebuilder http://www.angelfire.com/nt/teklord/FirstThunk.zip
11DKing http://www.reteam.org/tools/tf23.zip

Cavewriter http://sandsprite.com/CodeStuff/cavewriter.zip

RVA Converter http://www.polarhome.com:793/~execution/00/ex-rvall.zip

Offset Calculator http://protools.reverse-engineering.net/files/utilities/offcal.zip

91

21. Appendix: Complete

PE Offset Reference

While there is a lot of data and various parts of the structure are at varying positions there

are still

a

lot

of useful

relative offsets that will help when

disassembling/examining PE files. Resource information and the such like are omitted -
there are good tools available to manipulate these e.g. ResHacker.

The DOS Header

OFFSET [SIZE NAME EXPLANATION

02 WORD e_cblp Bytes on last page of file

04 WORD e cp Pages in file

06 WORD e_crlc Relocations

08 WORD e_cparhdr Size of header in paragraphs

0A WORD e_minalloc Minimum extra paragraphs needed
oC WORD e_maxalloc Maximum extra paragraphs needed
OE WORD e_ss Initial (relative) SS value

10 WORD e_sp Initial SP value

12 WORD e_csum Checksum

14 WORD e_ip Initial IP value

16 WORD e cs Initial (relative) CS value

18 WORD e_lIfarlc File address of relocation table

1A WORD e_ovno Overlay number

1C WORD e_res[4] Reserved words

24 WORD e_oemid OEM identifier (for e_oeminfo)

26 WORD e_oeminfo OEM information; e_oemid specific
28 WORD e_res2[10] Reserved words

93

The PE Header

Offsets shown are from the beginning of this section.

) 014Ch = Intel 386, 014Dh = Intel 486, 014Eh =

04 ||WORD Machine .
Intel 586, 0200h = Intel 64-bit, 0162h=MIPS

08 DWORD [TimeDateStamp Date & time image was created by the linker

0C |[DWORD |PointerToSymbolTable Zero or offset of COFF symbol table in older files

10 DWORD [NumberOfSymbols Number of symbols in COFF symbol table

14 ||WORD SizeOfOptionalHeader Size of optional header in bytes (224 in 32bit exge)

16 |WORD Characteristics see below

E R e
XX

010Bh=32-bit executable image

18 ||WORD Magic 020Bh=64-bit executable image
0107h=ROM image

1A ||BYTE MajorLinkerVersion Major version number of the linker

1B ||BYTE MinorLinkerVersion Minor version number of the linker
size of code section or sum if multiple code sections
as above

24 |IDWORD |SizeOfUninitializedData as above

2C |IDWORD |BaseOfCode RVA of first byte of code when loaded into RAM

30 DWORD [BaseOfData RVA of first byte of data when loaded into RAM

94

40 |(WORD MajorOperatingSystemVersion Major version no. of required operating system

42 |(WORD MinorOperatingSystemVersion Minor version no. of required operating system

44 | \WORD MajorImageVersion Major version number of the image

46 |(WORD MinorlmageVersion Minor version number of the image

48 |(WORD MajorSubsystemVersion Major version number of the subsystem

4A | (WORD MinorSubsystemVersion Minor version number of the subsystem

4C ||DWORD |Reservedl

s2 owono cnekcum e ™ o Fomelece

5C ||WORD Subsystem 0002h=Windows GUI, 0003h=Windows CUI
0001h=per-process library initialization

5E ||WORD DlICharacteristics 000Zh=per-process _Iibrary _te_r_mi_nation
0003h=per-thread library initialization
0004h=per-thread library termination

60 ||[DWORD [SizeOfStackReserve Number of bytes reserved for the stack

64 ||IDWORD [SizeOfStackCommit Number of bytes actually used for the stack

68 |[DWORD [SizeOfHeapReserve Number of bytes to reserve for the local heap

6C ||[DWORD ([SizeOfHeapCommit Number of bytes actually used for local heap

70 ||IDWORD [LoaderFlags This member is obsolete.

74 ||IDWORD [NumberOfRvaAndSizes Number of directory entries - usually set to 10h.

95

78 DWORD |IMAGE_DATA_DIRECTORYO RVA of Export Directory

7C ||[DWORD size of Export Directory

88 DWORD |IMAGE_DATA_ DIRECTORY2 RVA of Resource Directory

8C ||[DWORD size of Resource Directory

90 ||[DWORD [IMAGE_DATA DIRECTORY3 RVA of Exception Directory

94 DWORD size of Exception Directory

98 ||[DWORD [IMAGE_DATA DIRECTORY4 Raw Offset of Security Directory

9C ||[DWORD size of Security Directory

AO |[DWORD |IMAGE_DATA DIRECTORY5 RVA of Base Relocation Directory

A4 IDWORD size of Base Relocation Directory

A8 |[DWORD |IMAGE_DATA DIRECTORY6 RVA of Debug Directory

AC |[DWORD size of Debug Directory

BO |DWORD [IMAGE_DATA_ DIRECTORY7 RVA of Copyright Note

B4 |DWORD size of Copyright Note

B8 ||[DWORD |[IMAGE_DATA DIRECTORYS8 RVA to be used as Global Pointer (1A-64 only)
BC |[DWORD Not used

CO ||[DWORD [(IMAGE_DATA_DIRECTORY9 RVA of Thread Local Storage Directory
C4 ||DWORD size of Thread Local Storage Directory
C8 DWORD [IMAGE_DATA_DIRECTORY10 RVA of Load Configuration Directory
CC ||[DWORD size of Load Configuration Directory

96

DO ||[DWORD |[IMAGE_DATA_ DIRECTORY11 RVA of Bound Import Directory
D4 |DWORD size of Bound Import Directory
D8 |[DWORD |IMAGE_DATA_DIRECTORY12 RVA of first Import Address Table
DC |DWORD total size of all Import Address Tables
EO DWORD |IMAGE_DATA_ DIRECTORY13 RVA of Delay Import Directory
E4 |DWORD size of Delay Import Directory
E8 ||[DWORD |[IMAGE_DATA DIRECTORY14 RVA of COM Header (top level info & metadata..
EC |DWORD size of COM Header ...in .NET executables)
FO DWORD [ZERO (Reserved) Reserved
F4 IDWORD |ZERO (Reserved) Reserved
18 ||DWORD |pointerToRelocations Start of relocation entries for section, zero if none
1C |[DWORD |PointerToLinenumbers Start of line-no. entries for section, zero if none
20 ||WORD NumberOfRelocations This value is zero for executable images.
22 ||WORD NumberOfLineNumbers Number of line-number entries for section.
see end of page below
00 |8 Bytes |Namel Name of second section header

B

Repeats for rest of sections

AAAAAAAXAXAXAAAXAXAAAXAXAAAAAXAAAAAAAAXAAXXAXXK

97

*Xk

The Export Table

Offsets shown from beginning of table (given at offset 78 from start of PE header). The
following 40 Bytes repeat for each export library (DLL whose functions are imported by the
executable) and ends with one full of zeroes.

OFFSET |SIZE NAME EXPLANATION

00 DWORD |Characteristics Set to zero (currently none defined)

04 DWORD |TimeDateStamp often set to zero

08 WORD MajorVersion user-defined version number, otherwise zero
0A WORD MinorVersion as above

ocC DWORD |Name RVA of DLL name in null-terminated ASCII
10 DWORD |Base First valid exported ordinal, normally=1
14 DWORD |NumberOfFunctions [INumber of entries in EAT

18 DWORD |NumberOfNames Number of entries in ENT

1C DWORD |AddressOfFunctions |[RVA of EAT (export address table)

20 DWORD |AddressOfNames RVA of ENT (export name table)

24 DWORD ;’-:g(ljsressOfNameOrd RVA of EOT (export ordinal table)

The Import Table

Offsets shown from beginning of table (given at offset 80 from start of PE header). The
following 5 DWORDS repeat for each import library (DLL whose functions are imported by

the executable) and ends with one full of zeroes.

OFFSET |SIZE NAME EXPLANATION

00 DWORD |OriginalFirstThunk |RVA to Image_Thunk_Data

04 DWORD |TimeDateStamp zero unless bound against imported DLL
08 DWORD |ForwarderChain pointer to 1st redirected function (or 0)

RVA to name in null-terminated ASCII

RVA to Image_Thunk_Data

Image Characteristics Flags

98

FLAG EXPLANATION

0001 Relocation info stripped from file

0004 Line numbers stripped from file

0008 Local symbols stripped from file

0010 Lets OS aggressively trim working set

0020 App can handle >2Gb addresses

0080 Low bytes of machine word are reversed

0100 requires 32-bit WORD machine

0200 Debugging info stripped from file into .DBG file

0400 If image is on removable media, copy and run from swap file
0800 If image is on a network, copy and run from swap file
1000 System file

4000 File should only be run on a single-processor machine
8000 High bytes of machine word are reversed

Section Characteristics Flags

FLAG EXPLANATION
00000008 Section should not be padded to next boundary
00000040 _Se_c_ti(?n cor_ltains initialised data (V\-Ihi(?h will become
initialised with real values before the file is launched)
Section contains uninitialised data (which will be
00000080 o
initialised as 00 byte values before launch)
00000200 Section contains comments for the linker

99

00000800 Section contents will not become part of image
00001000 Section contents comdat (Common Block Data)
00008000 Section contents cannot be accessed relative to GP

00100000 to 00800000

Boundary alignment settings

01000000 Section contains extended relocations
02000000 Section can be discarded (e.g. .reloc)
04000000 Section is not cacheable

08000000 Section is pageable

10000000 Section is shareable

100

